AI Article Synopsis

  • Accurate and rapid breath monitoring plays a crucial role in healthcare, particularly for diagnosing conditions like sleep apnea and detecting early physiological disorders; however, existing devices are often uncomfortable and expensive.
  • This paper discusses the development of a sensitive respiratory sensor using silicon nanowires (SiNWs) created through a cost-effective technique involving metal-assisted chemical etching, emphasizing the importance of reducing production costs by exploring aluminum (Al) electrodes as an alternative to gold (Au).
  • The study compares the performance of SiNWs breath sensors with p-type and n-type silicon, observing that the choice of electrode material affects the sensor's response, ultimately highlighting the need for further research to understand the underlying mechanics of these interactions.

Article Abstract

Accurate and fast breath monitoring is of great importance for various healthcare applications, for example, medical diagnoses, studying sleep apnea, and early detection of physiological disorders. Devices meant for such applications tend to be uncomfortable for the subject (patient) and pricey. Therefore, there is a need for a cost-effective, lightweight, small-dimensional, and non-invasive device whose presence does not interfere with the observed signals. This paper reports on the fabrication of a highly sensitive human respiratory sensor based on silicon nanowires (SiNWs) fabricated by a top-down method of metal-assisted chemical-etching (MACE). Besides other important factors, reducing the final cost of the sensor is of paramount importance. One of the factors that increases the final price of the sensors is using gold (Au) electrodes. Herein, we investigate the sensor's response using aluminum (Al) electrodes as a cost-effective alternative, considering the fact that the electrode's work function is crucial in electronic device design, impacting device electronic properties and electron transport efficiency at the electrode-semiconductor interface. Therefore a comparison is made between SiNWs breath sensors made from both p-type and n-type silicon to investigate the effect of the dopant and electrode type on the SiNWs respiratory sensing functionality. A distinct directional variation was observed in the sample's response with Au and Al electrodes. Finally, performing a qualitative study revealed that the electrical resistance across the SiNWs renders greater sensitivity to breath than to dry air pressure. No definitive research demonstrating the mechanism behind these effects exists, thus prompting our study to investigate the underlying process.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10748167PMC
http://dx.doi.org/10.3390/s23249901DOI Listing

Publication Analysis

Top Keywords

n-type silicon
8
silicon nanowires
8
human respiratory
8
respiratory sensing
8
application n-type
4
nanowires human
4
device
4
sensing device
4
device accurate
4
accurate fast
4

Similar Publications

Effective engineering of nanostructured materials provides a scope to explore the underlying photoelectric phenomenon completely. A simple cost-effective chemical reduction route is taken to grow nanoparticles of Cd Zn S with varying = 1, 0.7, 0.

View Article and Find Full Text PDF

Dark current density, a critical parameter in perovskite photodetectors (PPDs), largely depends on the quality of the perovskite film. Herein, we introduce a new small molecule in antisolvent strategy to enhance perovskite film quality during the crystallization of Cs(FAMA)Pb(IBr). COTIC-4Cl, an N-type narrow bandgap nonfullerene small molecule with specific functional group, could strongly bind to the uncoordinated Pb in the perovskite with assistance of antisolvent, enabling rapid supersaturation of perovskite solution and form dense structures under low-temperature annealing.

View Article and Find Full Text PDF

Self-assembled gold nanoparticles (Au-NPs) possess distinctive properties that are highly desirable in diverse nanotechnological applications. This study meticulously explores the size-dependent behavior of Au-NPs under an electric field, specifically focusing on sizes ranging from 5 to 40 nm, and their subsequent assembly into 2D monolayers on an n-type silicon substrate. The primary objective is to refine the assembly process and augment the functional characteristics of the resultant nanostructures.

View Article and Find Full Text PDF

Realizing high power factor and thermoelectric performance in band engineered AgSbTe.

Nat Commun

January 2025

Department of Materials Science and Engineering, Pennsylvania State University, University Park, PA, USA.

Article Synopsis
  • AgSbTe is a promising p-type thermoelectric material that has seen improvements focused on reducing lattice thermal conductivity, but its low power factor limits device performance.
  • Recent research shows that doping AgSbTe with Sn creates a new impurity band, enhancing electrical properties and achieving a record-high power factor of 27 μWcmK and a peak thermoelectric figure of merit zT of 2.5 at 673 K.
  • The improved performance is due to increased hole concentration and reduced bipolar conductivity, resulting in an efficient thermoelectric device with energy conversion efficiencies of 12.1% and a power density of 1.13 Wcm.
View Article and Find Full Text PDF

With reduced dimensionality and a high surface area-to-volume ratio, two-dimensional (2D) semiconductors exhibit intriguing electronic properties that are exceptionally sensitive to surrounding environments, including directly interfacing gate dielectrics. These influences are tightly correlated to their inherent behavior, making it critical to examine when extrinsic charge carriers are intentionally introduced to the channel for complementary functionality. This study explores the physical origin of the competitive transition between intrinsic and extrinsic charge carrier conduction in extrinsically -doped MoS, highlighting the central role of interactions of the channel with amorphous gate dielectrics.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!