Construction is known as one of the most dangerous industries in terms of worker safety. Collisions due the excessive proximity of workers to moving construction vehicles are one of the leading causes of fatal and non-fatal accidents on construction sites internationally. Proximity warning systems (PWS) have been proposed in the literature as a solution to detect the risk for collision and to alert workers and equipment operators in time to prevent collisions. Although the role of sensing technologies for situational awareness has been recognised in previous studies, several factors still need to be considered. This paper describes the design of a prototype sensor-based PWS, aimed mainly at small and medium-sized construction companies, to collect real-time data directly from construction sites and to warn workers of a potential risk of collision accidents. It considers, in an integrated manner, factors such as cost of deployment, the actual nature of a construction site as an operating environment and data protection. A low-cost, ultra-wideband (UWB)-based proximity detection system has been developed that can operate with or without fixed anchors. In addition, the PWS is compliant with the General Data Protection Regulation (GDPR) of the European Union. A privacy-by-design approach has been adopted and privacy mechanisms have been used for data protection. Future work could evaluate the PWS in real operational conditions and incorporate additional factors for its further development, such as studies on the timely interpretation of data.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10747065 | PMC |
http://dx.doi.org/10.3390/s23249770 | DOI Listing |
J Neurosurg
January 2025
1Department of Neurosurgery, Inselspital, Bern University Hospital, University Bern, Switzerland.
Objective: The effectiveness and optimal stimulation site of deep brain stimulation (DBS) for central poststroke pain (CPSP) remain elusive. The objective of this retrospective international multicenter study was to assess clinical as well as neuroimaging-based predictors of long-term outcomes after DBS for CPSP.
Methods: The authors analyzed patient-based clinical and neuroimaging data of previously published and unpublished cohorts from 6 international DBS centers.
J Am Chem Soc
January 2025
Tianjin Key Laboratory of Brine Chemical Engineering and Resource Eco-utilization, College of Chemical Engineering and Materials Science, Tianjin University of Science & Technology, Tianjin 300457, P. R. China.
Polymer nanoparticles with low curvature, especially two-dimensional (2D) soft materials, are rich in functions and outstanding properties and have received extensive attention. Crystallization-driven self-assembly (CDSA) of linear semicrystalline block copolymers is currently a common method of constructing 2D platelets of uniform size. Although accompanied by high controllability, this CDSA method usually and inevitably requires a longer aging time and lower assembly concentration, limiting the large-scale preparation of nanoaggregates.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Science, Beijing 100085, China.
Vinylene-linked Covalent Organic Frameworks (V-2D-COFs) are a class of promising porous organic materials that feature fully π-conjugated structures, high crystallinity, ultrahigh chemical stability, and extraordinary optoelectronic properties. However, the types of reactions and the availability of monomers for synthesizing linked COFs are considerably limited by the irreversibility of the C═C bond, and the complete π-conjugated structure restricts their in-depth research in hydrophilicity, membrane materials, and proton conductivity. Postsynthetic modification (PSM), which can avoid these problems by incorporating functional moieties into the predetermined framework, provides an alternative way to construct diverse V-2D-COFs.
View Article and Find Full Text PDFDalton Trans
January 2025
National Forestry and Grassland Administration Key Laboratory of Plant Fiber Functional Materials, College of Materials Engineering, Fujian Agriculture and Forestry University, Fuzhou 350002, China.
The unique benefits of nickel-aluminium layered double hydroxide (Ni-Al LDH)-based heterojunctions, including large surface area, tunable bandgap and morphology, abundant reaction sites, and high activity, selectivity, and photostability, make them extremely promising for photocatalytic applications. Given the importance and benefits of Ni-Al LDH-based heterojunctions in photocatalysis, it is necessary to provide a summary of Ni-Al LDH-based heterojunctions for photocatalytic applications. Hence, in this review, we thoroughly described the material design for Ni-Al LDH-based heterojunctions, along with their recent developments in various photocatalytic applications, , H evolution, CO reduction, and pollutant removal.
View Article and Find Full Text PDFAlzheimers Dement
December 2024
School of Public Health, University of Pittsburgh, Pittsburgh, PA, USA.
Background: The common APOE2/E3/E4 polymorphism, the strongest risk factor for Alzheimer's disease (AD), is determined by two-site haplotypes at codons 112 (Cys>Arg) and 158 (Arg>Cys), resulting into six genotypes. Due to strong linkage disequilibrium between the two sites, 3 of the 4 expected haplotypes (E2, E3, E4) have been observed and extensively studied in relation to AD risk. Compared to the most common haplotype of E3 (Cys112 - Arg158), E4 (Arg112 - Arg 158) and E2 (Cys112 - Cys158) haplotypes are determined by a single-point mutation at codons 112 and 158, respectively.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!