This paper proposes a new methodology for the automatic detection of magnetic disturbances from magnetic inertial measurement unit (MIMU) sensors based on deep learning. The proposed approach considers magnetometer data as input to a long short-term memory (LSTM) neural network and obtains a labeled time series output with the posterior probabilities of magnetic disturbance. We trained our algorithm on a data set that reproduces a wide range of magnetic perturbations and MIMU motions in a repeatable and reproducible way. The model was trained and tested using 15 folds, which considered independence in sensor, disturbance direction, and signal type. On average, the network can adequately detect the disturbances in 98% of the cases, which represents a significant improvement over current threshold-based detection algorithms.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10747388PMC
http://dx.doi.org/10.3390/s23249683DOI Listing

Publication Analysis

Top Keywords

automatic detection
8
detection magnetic
8
magnetic disturbances
8
disturbances magnetic
8
magnetic inertial
8
inertial measurement
8
measurement unit
8
sensors based
8
magnetic
6
unit sensors
4

Similar Publications

With the rising demand of saffron, it is essential to standardize the confirmation of its origin and identify any adulteration to maintain a good quality led market product. However, a rapid and reliable strategy for identifying the adulteration saffron is still lacks. Herein, a combination of headspace-gas chromatography-ion mobility spectrometry (HS-GC-IMS) and convolutional neural network (CNN) was developed.

View Article and Find Full Text PDF

Background: The National Lung Screening Trial (NLST) has shown that screening with low dose CT in high-risk population was associated with reduction in lung cancer mortality. These patients are also at high risk of coronary artery disease, and we used deep learning model to automatically detect, quantify and perform risk categorisation of coronary artery calcification score (CACS) from non-ECG gated Chest CT scans.

Materials And Methods: Automated calcium quantification was performed using a neural network based on Mask regions with convolutional neural networks (R-CNN) for multiorgan segmentation.

View Article and Find Full Text PDF

Introduction: Potatoes and tomatoes are important Solanaceae crops that require effective disease monitoring for optimal agricultural production. Traditional disease monitoring methods rely on manual visual inspection, which is inefficient and prone to subjective bias. The application of deep learning in image recognition has led to object detection models such as YOLO (You Only Look Once), which have shown high efficiency in disease identification.

View Article and Find Full Text PDF

Networked datasets can be enriched by different types of information about individual nodes or edges. However, most existing methods for analyzing such datasets struggle to handle the complexity of heterogeneous data, often requiring substantial model-specific analysis. In this article, we develop a probabilistic generative model to perform inference in multilayer networks with arbitrary types of information.

View Article and Find Full Text PDF

Background: Stress is a significant risk factor for psychiatric disorders such as major depressive disorder (MDD) and panic disorder (PD). This highlights the need for advanced stress-monitoring technologies to improve treatment. Stress affects the autonomic nervous system, which can be evaluated via heart rate variability (HRV).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!