Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Monitoring human movement is highly relevant in mobile health applications. Textile-based wearable solutions have the potential for continuous and unobtrusive monitoring. The precise estimation of joint angles is important in applications such as the prevention of osteoarthritis or in the assessment of the progress of physical rehabilitation. We propose a textile-based wearable device for knee angle estimation through capacitive sensors placed in different locations above the knee and in contact with the skin. We exploited this modality to enhance the baseline value of the capacitive sensors, hence facilitating readout. Moreover, the sensors are fabricated with only one layer of conductive fabric, which facilitates the design and realization of the wearable device. We observed the capability of our system to predict knee sagittal angle in comparison to gold-standard optical motion capture during knee flexion from a seated position and squats: the results showed an R coefficient between 0.77 and 0.99, root mean squared errors between 4.15 and 12.19 degrees, and mean absolute errors between 3.28 and 10.34 degrees. Squat movements generally yielded more accurate predictions than knee flexion from a seated position. The combination of the data from multiple sensors resulted in R coefficient values of 0.88 or higher. This preliminary work demonstrates the feasibility of the presented system. Future work should include more participants to further assess the accuracy and repeatability in the presence of larger interpersonal variability.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10747625 | PMC |
http://dx.doi.org/10.3390/s23249657 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!