Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 197
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 197
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 271
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1057
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3175
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
The resonant magnetoelectric (ME) effect of FeSiB/Pb(Zr,Ti)O (FeSiB/PZT) composites with a surface-modified FeSiB amorphous alloy has been studied. The surface-modified FeSiB can improve the ME coefficient at the resonant frequency by optimizing the magnetomechancial power conversion efficiency. The maximum ME coefficient of the surface-modified ribbons combined with soft PZT (PZT5) is two-thirds larger than that of the composites with fully amorphous ribbons. Meanwhile, the maximum value of the ME coefficient with surface-modified FeSiB ribbons and hard PZT (PZT8) is one-third higher compared with the fully amorphous composites. In addition, experimental results of magnetomechanical coupling properties of FeSiB/PZT composites with or without piezoelectric layers indicate that the power efficiency of the composites first decreases and then increases with the increase in the number of FeSiB layers. When the surface crystalline FeSiB ribbons are combined with a commercially available hard piezoelectric ceramic plate, the maximum magnetoelectric coupling coefficient of the ME composite reaches 5522 V/(Oe*cm), of which the electromechanical resonant frequency is 23.89 kHz.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10747281 | PMC |
http://dx.doi.org/10.3390/s23249622 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!