Utilization of High-Zn Content Ferrous Landfill Sludge with the Use of Hydrogen.

Materials (Basel)

Faculty of Metals Engineering and Industrial Computer Science, AGH University of Krakow, Mickiewicza 30, 30-059 Krakow, Poland.

Published: December 2023

Sludge, due to its form and significant moisture and zinc content, is the most problematic metallurgical waste. Near the site of a disused steelworks plant in Krakow (Poland) there is an estimated 5 million tonnes of landfill sludge that consists of more than 90% iron and other metal oxides. There is a global tendency to switch steel production towards carbonless technologies, which is why the presented work investigates the possibility of simultaneous waste liquidation and recovery of valuable metals with the use of hydrogenous reduction. Direct reduced iron (DRI) production was selected as the targeted technology, so the sludge was lumped and bound with cement or CaO addition. The obtained lumps were reduced in a hydrogenous atmosphere with gradual heating to 950 °C, after which their phase structure was analyzed and elemental analysis was performed. It was found that zinc evaporated during the experiment, but mostly thanks to the carbon contained in the sludge. The increased addition of binder to the sludge resulted in the enhancement of the lumps, but also limited the reduction range. The products obtained were mostly wustite and less pure iron. Taking into account the degree of reduction and the lumps' compression strength, the best binding was achieved by adding cement at a quantity of 5% mass.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10745102PMC
http://dx.doi.org/10.3390/ma16247676DOI Listing

Publication Analysis

Top Keywords

landfill sludge
8
sludge
6
utilization high-zn
4
high-zn content
4
content ferrous
4
ferrous landfill
4
sludge hydrogen
4
hydrogen sludge
4
sludge form
4
form moisture
4

Similar Publications

Shotgun and proximity-ligation metagenomic sequencing were used to generate thousands of metagenome assembled genomes (MAGs) from the untreated wastewater, activated sludge bioreactors, and anaerobic digesters from two full-scale municipal wastewater treatment facilities. Analysis of the antibiotic resistance genes (ARGs) in the pool of contigs from the shotgun metagenomic sequences revealed significantly different relative abundances and types of ARGs in the untreated wastewaster compared to the activated sludge bioreactors or the anaerobic digesters (p < 0.05).

View Article and Find Full Text PDF

Sludge landfilling is widely used in China, accounting for approximately 65% of total sludge disposal, due to its simplicity and cost-effectiveness. However, with increasing land scarcity and stricter environmental regulations, the Chinese government has emphasized reducing sludge landfilling. Despite these efforts, sludge historically disposed of in landfills continues to pose risks, including heavy metal leaching and contamination of groundwater and soil.

View Article and Find Full Text PDF

The unintended microbiological production of hydrogen sulphide (HS) poses a significant challenge in engineered systems, including sewage treatment plants, landfills and aquaculture systems. Although sulphur-rich amino acids and other substrates conducive to non-sulphate-based HS production are frequently present, the capacity and potential of various microorganisms to perform sulphate-free HS production remain unclear. In this study, we identify the identity, activity and genomic characteristics of bacteria that degrade cysteine to produce HS in anaerobic enrichment bioreactors seeded with material from aquaculture systems.

View Article and Find Full Text PDF

Combination of anaerobic digestion and sludge biochar for bioenergy conversion: Estimation and evaluation of energy production, CO emission, and cost analysis.

J Environ Manage

January 2025

Bioenergy Research Institute - IPBEN, UNESP, Institute of Chemistry, Araraquara, SP, Brazil; São Paulo State University (UNESP), Institute of Chemistry, Campus Araraquara, Department of Engineering, Physics and Mathematics, Rua Prof. Francisco Degni, 55, 14800-900, Araraquara, SP, Brazil. Electronic address:

Waste-to-energy technologies involve the conversion of several wastes to useful energy forms like biogas and biochar, which include biological and thermochemical processes, as well as the combination of both systems. Assessing the economic and environmental impacts is an important step to integrate sustainability and economic viability at anaerobic digestion systems and its waste management. Energy production, CO emissions, cost analysis, and an overall process evaluation were conducted, relying on findings from both laboratory and pilot-scale experiments.

View Article and Find Full Text PDF

This study evaluates the environmental and human health impact of sewage sludge generated in the Indo-Gangetic region (Uttarakhand and Uttar Pradesh) used as organic fertilizer and landfill disposal. The research conducts a comprehensive risk assessment, including physicochemical and heavy metals analysis, on triplicate sludge samples obtained from 30 sewage treatment plants. The study provides both qualitative and quantitative insights into potential hazards associated with sewage sludge.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!