The purpose of this study is to synthesize geopolymer binders as an environmentally friendly alternative to conventional cement using available local raw materials. Waste materials such as chalcedonite (Ch), amphibolite (A), fly ash from lignite combustion (PB), and diatomite dust (D) calcined at 900 °C were used to produce geopolymer binders. Metakaolin (M) was used as an additional modifier for binders based on waste materials. The base materials were subjected to fluorescence X-ray fluorescence (XRF) analysis and X-ray diffractometry (XRD) to determine chemical and phase composition. A laser particle size analysis was also performed. The various mixtures of raw materials were activated with a 10 M solution of NaOH and sodium water glass and then annealed for 24 h at 60 °C. The produced geopolymer binders were conditioned for 28 days under laboratory conditions and then subjected to microstructural analysis (SEM) and flexural and compressive strength tests. The best compressive strength results were obtained by the Ch + PB samples-more than 57 MPa, while the lowest results were obtained by the Ch + D+A + M samples-more than 20 MPa. On the other hand, as a result of the flexural strength tests, the highest flexural results were obtained by D + A + M + PB binders-more than 12 MPa, and the lowest values were obtained by binders based on Ch + D+A + M-about 4.8 MPa.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10744968 | PMC |
http://dx.doi.org/10.3390/ma16247651 | DOI Listing |
Sci Rep
January 2025
Copernicus Institute of Sustainable Development, Utrecht University, Utrecht, The Netherlands.
This study explores the mechanical properties of geopolymer mortars incorporating ceramic and glass powders sourced from industrial waste. A Box-Behnken design was employed to assess the effects of ceramic waste powder (CWP) content, alkaline activator ratio, solution-to-binder (S: B) ratio, and oven curing duration on the mortar's performance. Compressive strengths were measured at 3 and 28 days, and regression models were developed to predict these outcomes.
View Article and Find Full Text PDFJ Environ Manage
December 2024
Division of Environmental Science and Engineering (DESE), Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea; Division of Advanced Nuclear Engineering (DANE), Pohang University of Science and Technology (POSTECH), Pohang, 37673, Republic of Korea. Electronic address:
A geopolymer waste form has become a suitable approach for the immobilization of the volatile technetium (Tc) due to the low curing temperature (<60 °C). However, the low retention and the high mobility of the anionic technetium (TcO) remain challenging due to the charge repulsion stemming from the negative charges of the geopolymer surface and the anionic TcO. Herein, a geopolymer composite containing sulfidized nanoscale zerovalent iron (S-nZVI) was developed to reductively immobilize ReO (used as a non-radioactive surrogate for TcO).
View Article and Find Full Text PDFEnviron Sci Pollut Res Int
December 2024
Department of Civil Engineering, SRM University-AP, Andhra Pradesh, Amaravati, India.
J Environ Manage
December 2024
School of Water Conservancy and Transportation, Zhengzhou University, Zhengzhou, Henan, 450001, China.
Commun Eng
November 2024
Arizona State University, 660 S. College Avenue, Tempe, AZ, 85287, USA.
As waste production increases and resources become limited, sewage sludge presents a valuable resource with potential beyond traditional land use and incineration. This review emphasizes exploring innovative non-fertilizer applications of sewage sludges and advocates for viewing wastewater treatment plants as sources of valuable feedstock and carbon sequestration. Innovative uses include integrating sewage sludge into construction materials such as asphalt pavements, geopolymer, cementitious composites, and masonry blocks.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!