Nowadays, choosing a corrosion inhibitor is not only based on efficiency, but must also consider the toxicity of the compound, the impact on the environment, and, obviously, the regulations in the field. In the last two decades, a special class of substances has begun to be studied, namely polyoxometalates (POMs). Their electronic properties and redox characteristics make the polyoxometalates potential candidates to be used in many electrochemical processes, and as potential corrosion inhibitors. Electrochemical methods such as a Tafel extrapolation plot, chronopotentiometry, or gravimetry have been used to establish the capacity of corrosion inhibition of S235 and SS304 steels in the presence of phosphovanadomolibdate acid (@PMoV) and phosphovanadotungstate acid (@PWV) in 0.5 M sulphuric acid solution. The inhibition efficiency for S235 steel is about 90.6% for @PMoV, and 69.5% for @PWV after 24 h of immersion. In the case of SS304 steel, polyoxometalates have similar effects: the inhibition degree, as a function of Flade potential, is 4.66 for @PMoV; better than 3.26 for @PWV, with both proving the passivant effect.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10745015 | PMC |
http://dx.doi.org/10.3390/ma16247600 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!