AI Article Synopsis

  • Auxetic structures, which expand laterally when stretched, were studied for their unique mechanical properties, showcasing the effects of geometric adjustments on their behavior.
  • The research involved creating fifty unique models by varying parameters like angle, side length, and overlap, identifying how these modifications influenced the Poisson's ratio ranging from -0.43 to -1.78.
  • A neural network model was used to predict the Poisson's ratio based on these geometric changes, revealing significant variations in auxetic behavior linked to specific adjustments, such as an impressive 202.8% change in response to width and overlap modifications.

Article Abstract

Auxetic structures, renowned for their unique lateral expansion under longitudinal strain, have attracted significant research interest due to their extraordinary mechanical characteristics, such as enhanced toughness and shear resistance. This study provides a systematic exploration of these structures, constructed from rigid rotating square or rectangular unit cells. Incremental alterations were applied to key geometrical parameters, including the angle (θ) between connected units, the side length (), the side width () of the rotating rigid unit, and the overlap distance (). This resulted in a broad tunable range of negative Poisson's ratio values from -0.43 to -1.78. Through comprehensive three-dimensional finite-element analyses, the intricate relationships between the geometric variables and the resulting bulk Poisson's ratio of the modeled auxetic structure were elucidated. This analysis affirmed the auxetic behavior of all investigated samples, characterized by lateral expansion under tensile force. The study also revealed potential stress concentration points at interconnections between rotating units, which could impact the material's performance under high load conditions. A detailed investigation of various geometrical parameters yielded fifty unique samples, enabling in-depth observation of the impacts of geometric modifications on the overall behavior of the structures. Notably, an increase in the side width significantly enhanced the Poisson's ratio, while an increase in the overlap distance notably reduced it. The greatest observable change in the Poisson's ratio was a remarkable 202.8%, emphasizing the profound influence of geometric parameter manipulation. A cascaded forward propagation-backpropagation neural network model was deployed to determine the Poisson's ratio for auxetic structures, based on the geometric parameters and material properties of the structure. The model's architecture consisted of five layers with varying numbers of neurons. The model's validity was affirmed by comparing its predictions with FEA simulations, with the maximum error observed in the predicted Poisson's ratio being 8.62%.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10744777PMC
http://dx.doi.org/10.3390/ma16247597DOI Listing

Publication Analysis

Top Keywords

poisson's ratio
24
auxetic structure
8
auxetic structures
8
lateral expansion
8
geometrical parameters
8
side width
8
overlap distance
8
poisson's
6
ratio
6
auxetic
5

Similar Publications

T700 Carbon Fiber/Epoxy Resin Composite Material Hygrothermal Aging Model.

Materials (Basel)

January 2025

Institute of Process Equipment, College of Energy Engineering, Zhejiang University, Hangzhou 310007, China.

The hygrothermal aging model, based on Fick's second law of diffusion, characterizes the degradation of engineering constants in T700 carbon fiber/epoxy resin composites. It focuses on changes in the tensile modulus, shear modulus, and transverse Poisson's ratio due to moisture absorption and temperature variations. The model validates through mass change observations before and after seawater immersion, along with surface morphology assessments and tensile experiments.

View Article and Find Full Text PDF

The present work investigates the interfacial and atomic layer-dependent mechanical properties, SOC-entailing phonon band structure, and comprehensive electron-topological-elastic integration of ZrTe and NiTe. The anisotropy of Young's modulus, Poisson's ratio, and shear modulus are analyzed using density functional theory with the TB-mBJ approximation. NiTe has higher mechanical property values and greater anisotropy than ZrTe.

View Article and Find Full Text PDF

Silicate glasses are commonly used for many important industrial applications. As such, the literature provides a wealth of different structural, physical, thermodynamic and mechanical properties for many different chemical compositions of oxide glasses. However, a frequent limitation to existing datasets is that only one or two material properties can be evaluated for a given sample.

View Article and Find Full Text PDF

Simulation of a liquid drop on a soft substrate.

Eur Phys J E Soft Matter

January 2025

Department of Fundamental Physics, Faculty of Physics, Alzahra University, Tehran, 1993891167, Iran.

A liquid drop resting on a soft substrate is numerically simulated as an energy minimization problem. The elastic substrate is modeled as a cubic lattice of mass-springs, to which an energy term controlling the change of volume is associated. The interfacial energy between three phases of solid, liquid, and vapor is also introduced.

View Article and Find Full Text PDF

Flexible tactile sensors have received significant attention for use in wearable applications such as robotics, human-machine interfaces, and health monitoring. However, conventional tactile sensors face challenges in accurately measuring pressure because vertical deformation is induced by Poisson's ratio in situations where lateral strain is applied. This study shows a strain-insensitive flexible tactile sensor array without the crosstalk effect using a highly stretchable mesh.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!