Platform heating is one of the effective strategies used in laser powder bed fusion (LPBF) to avoid cracking during manufacturing, especially when building relatively large-size components, as it removes significant process-induced residual strains. In this work, we propose a novel and simple method to spare the elaborate post-processing heat treatment typically needed for LPBF Al-Sc alloys without compromising the mechanical properties. We systematically investigated the effects of LPBF platform heating at 200 °C on the residual stress relief, microstructure, and mechanical performance of a high-strength Al-Mn-Sc alloy. The results reveal that LPBF platform heating at 200 °C is sufficient to largely relieve the process-induced residual stresses compared to parts built on an unheated 35 °C platform. Meanwhile, the platform heating triggered the dynamic precipitation of uniformly dispersed (1.5-2 nm) Sc-rich nano-clusters. Their formation in a high number density (1.75 × 10 m) resulted in a ~20% improvement in tensile yield strength (522 MPa) compared to the build on the unheated platform, without sacrificing the ductility (up to 18%). The improved mechanical properties imply that platform heating at 200 °C can strengthen the LPBF-synthesised Sc-containing Al alloys via in situ aging, which is further justified by an in situ measurement study revealing that the developing temperatures in the LPBF part are within the aging temperature range of Al-Sc alloys. Without any post-LPBF treatments, these mechanical properties have proven better than those of most Al-Sc alloys through long-time post-LPBF heat treatment.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10744844 | PMC |
http://dx.doi.org/10.3390/ma16247586 | DOI Listing |
Nanoscale
January 2025
Nanomaterials for BioImaging Group (nanoBIG), Departamento de Física de Materiales, Universidad Autónoma de Madrid (UAM), Madrid 28049, Spain.
All-optical theranostic systems are sought after in nanomedicine, since they combine in a single platform therapeutic and diagnostic capabilities. Commonly in these systems the therapeutic and diagnostic/imaging functions are accomplished with plasmonic photothermal agents and luminescent nanoparticles (NPs), respectively. For maximized performance and minimized side effects, these two modalities should be independently activated, , in a decoupled way, using distinct near infrared (NIR) wavelengths: a radiation window wherein photon-tissue interaction is reduced.
View Article and Find Full Text PDFSmall
January 2025
School of Biomedical Sciences, LKS Faculty of Medicine, The University of Hong Kong, Hong Kong, China.
Fluorescent light-up aptamer/fluorogen pairs are powerful tools for tracking RNA in the cell, however limitations in thermostability and fluorescence intensity exist. Current in vitro selection techniques struggle to mimic complex intracellular environments, limiting in vivo biomolecule functionality. Taking inspiration from microenvironment-dependent RNA folding observed in cells and organelle-mimicking droplets, an efficient system is created that uses microscale heated water droplets to simulate intracellular conditions, effectively replicating the intracellular RNA folding landscape.
View Article and Find Full Text PDFJ Colloid Interface Sci
January 2025
College of Light Industry and Food Engineering, Nanjing Forestry University, Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing 210037 China. Electronic address:
Surface-enhanced Raman scattering (SERS) is a highly sensitive technology to detect target analytes. The construction of dynamic "hot-spots" represents a significant approach to enhancing detection sensitivity. Herein, a hybrid plasma platform with dynamic "hot-spots" was developed for SERS recognition based on the assembly of gold nanospheres (AuNSs) on temperature-sensitive bacterial cellulose (BC) film grafted with poly(N-isopropylacrylamide) (PNIPAM).
View Article and Find Full Text PDFBiomater Adv
January 2025
College of Physical Science and Technology, Central China Normal University, Wuhan 430079, China. Electronic address:
In this study, we developed an innovative CuSe/PDA/AIPH nanoparticle platform that combines photothermal therapy and chemotherapy for effective tumor treatment. The CuSe nanoparticles, known for their strong near-infrared (NIR) absorption, were encapsulated within a polydopamine (PDA) and 2,2'-azobis[2-(2-imidazolin-2-yl)propane] dihydrochloride (AIPH) matrix. Upon NIR irradiation, the platform triggers localized heating and subsequent thermal decomposition of AIPH, releasing ROS to induce significant oxidative damage in tumor cells.
View Article and Find Full Text PDFSci Adv
January 2025
Guangdong Provincial Key Laboratory of Optical Fiber Sensing and Communications, Institute of Photonics Technology, Jinan University, Guangzhou 510632, China.
Artificial nanostructures with ultrafine and deep-subwavelength features have emerged as a paradigm-shifting platform to advanced light-field management, becoming key building blocks for high-performance integrated optoelectronics and flat optics. However, direct optical inspection of integrated chips remains a missing metrology gap that hinders quick feedback between design and fabrications. Here, we demonstrate that photothermal nonlinear scattering microscopy can be used for direct imaging and resolving of integrated optoelectronic chips beyond the diffraction limit.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!