Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Advanced high-strength steels (AHSS) have a wide range of applications in equipment safety and lightweight design, and enhancing the strength of AHSS to the ultra-high level of 2 GPa is currently a key focus. In this study, a new process of thermo-mechanical control process followed by direct quenching and partitioning (TMCP-DQP) was developed based on Fe-0.4C-1Mn-0.6Si (wt.%) low-alloy steel, and the effects of microstructure evolution on mechanical properties under TMCP-DQP process and conventional hot rolled quenched and tempered process (HR-QT) were comparatively studied. The results show that the TMCP-DQP process not only shortened the processing steps but also achieved outstanding comprehensive mechanical properties. The TMCP-DQP steel exhibited a tensile strength of 2.23 GPa, accompanied by 11.9% elongation and a Brinell hardness of 624 HBW, with an impact toughness of 28.5 J at -20 °C. In contrast, the HR-QT steel exhibited tensile strengths ranging from 2.16 GPa to 1.7 GPa and elongations between 5.2% and 12.2%. The microstructure of TMCP-DQP steel primarily consisted of lath martensite, containing thin-film retained austenite (RA), nanoscale rod-shaped carbides, and a minor number of nanoscale twins. The volume fraction of RA reached 7.7%, with an average carbon content of 7.1 at.% measured by three-dimensional atom probe tomography (3DAP). Compared with the HR-QT process, the TMCP-DQP process resulted in a finer microstructure, with a prior austenite grain (PAG) size of 11.91 μm, forming packets and blocks with widths of 5.12 μm and 1.63 μm. The TMCP-DQP process achieved the ultra-high strength of low-alloy steel through the synergistic effects of grain refinement, dislocation strengthening, and precipitation strengthening. The dynamic partitioning stage stabilized the RA through carbon enrichment, while the relaxation stage reduced a small portion of the dislocations generated by thermal deformation, and the self-tempering stage eliminated internal stresses, all guaranteeing considerable ductility and toughness. The TMCP-DQP process may offer a means for industries to streamline their manufacturing processes and provide a technological reference for producing 2.2 GPa grade AHSS.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10744404 | PMC |
http://dx.doi.org/10.3390/ma16247533 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!