Biomaterial-centered infections of orthopedic implants remain a significant burden in the healthcare system due to sedentary lifestyles and an aging population. One approach to combat infections and improve implant osteointegration is functionalizing the implant surface with anti-infective and osteoinductive agents. In this framework, Au nanoparticles are produced on the surface of Ti-6Al-4V medical alloy by solid-state dewetting of 5 nm Au film and used as the substrate for the conjugation of a model antibiotic vancomycin via a mono-thiolated poly(ethylene glycol) linker. Produced Au nanoparticles on Ti-6Al-4V surface are equiaxed with a mean diameter 19.8 ± 7.2 nm, which is shown by high-resolution scanning electron microscopy and atomic force microscopy. The conjugation of the antibiotic vancomycin, 18.8 ± 1.3 nm-thick film, is confirmed by high resolution-scanning transmission electron microscopy and X-ray photoelectron spectroscopy. Overall, showing a link between the solid-state dewetting process and surface functionalization, we demonstrate a novel, simple, and versatile method for functionalization of implant surfaces.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10744913PMC
http://dx.doi.org/10.3390/ma16247524DOI Listing

Publication Analysis

Top Keywords

solid-state dewetting
12
surface functionalization
8
antibiotic vancomycin
8
electron microscopy
8
surface
5
dewetting thin
4
thin films
4
films surface
4
functionalization biomedical
4
biomedical implants
4

Similar Publications

Control of Two Solid Electrolyte Interphases at the Negative Electrode of an Anode-Free All Solid-State Battery based on Argyrodite Electrolyte.

Adv Mater

January 2025

Materials Science and Engineering Program, Walker Department of Mechanical Engineering and Texas Materials Institute, The University of Texas at Austin, Austin, TX, 78712, USA.

Anode-free all solid-state batteries (AF-ASSBs) employ "empty" current collector with three active interfaces that determine electrochemical stability; lithium metal - Solid electrolyte (SE) interphase (SEI-1), lithium - current collector interface, and collector - SE interphase (SEI-2). Argyrodite LiPSCl (LPSCl) solid electrolyte (SE) displays SEI-2 containing copper sulfides, formed even at open circuit. Bilayer of 140 nm magnesium/30 nm tungsten (Mg/W-Cu) controls the three interfaces and allows for state-of-the-art electrochemical performance in half-cells and fullcells.

View Article and Find Full Text PDF

Template-Guided Nondeterministic Assembly of Organosilica Nanodots for Multifunctional Physical Unclonable Functions.

ACS Appl Mater Interfaces

January 2025

Jieyang Branch of Chemistry and Chemical Engineering Guangdong Laboratory, Jieyang 515200, China.

Optical physical unclonable functions (PUFs) are gaining attention as a robust security solution for identification in the expanding Internet of Things (IoT). To enhance the security and functionality of PUFs, integrating multiple optical responses─such as fluorescence and structural color─into a single system is essential. These diverse optical properties enable multilevel authentication, where different layers of security can be verified under varying light conditions, greatly reducing the risk of counterfeiting.

View Article and Find Full Text PDF

In Situ Solid-State Dewetting of Ag-Au-Pd Alloy: From Macro- to Nanoscale.

ACS Appl Mater Interfaces

November 2024

Department of Materials Science and Engineering, University of California - Davis, Davis, California 95616, United States.

Metal alloy nanostructures represent a promising platform for next-generation nanophotonic devices, surpassing the limitations of pure metals by offering additional "buttons" for tailoring their optical properties by compositional variations. While alloyed nanoparticles hold great potential, their scalability and underexplored optical behavior still limit their application. Here, we establish a systematic approach to quantifying the unique optical behavior of the AgAuPd ternary system while providing a direct comparison with its pure constituent metals.

View Article and Find Full Text PDF

The Fabrication of Gold Nanostructures as SERS Substrates for the Detection of Contaminants in Water.

Nanomaterials (Basel)

September 2024

Centro de Excelencia en Nuevos Materiales (CENM), Universidad del Valle, Santiago de Cali 760032, Colombia.

Gold nanostructures (AuNSs) were used to fabricate surface-enhanced Raman spectroscopy (SERS) substrates. These AuNSs were produced using the solid-state dewetting method from thin films. The fragmentation process was studied at 300 °C, with durations of thermal treatment of 1, 3, 6, and 12 h.

View Article and Find Full Text PDF

Creating plasmonic nanoparticles on a tapered optical fiber (TF) tip enables a remote surface-enhanced Raman scattering (SERS) sensing probe, ideal for challenging sampling scenarios like biological tissues, site-specific cells, on-site environmental monitoring, and deep brain structures. However, nanoparticle patterns fabricated from current bottom-up methods are mostly random, making geometry control difficult. Uneven statistical distribution, clustering, and multilayer deposition introduce uncertainty in correlating device performance with morphology.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!