The aesthetic constancy and functional stability of periodontium largely depend on the presence of healthy mucogingival tissue. Soft tissue management is crucial to the success of periodontal surgery. Recently, synthetic substitute materials have been proposed to be used for soft tissue augmentation, but the tissue compatibility of these materials needs to be further investigated. This study aims to assess the in vitro responses of human gingival mesenchymal stromal cells (hG-MSCs) cultured on a Gelatin/Polycaprolactone prototype (GPP) and volume-stable collagen matrix (VSCM). hG-MSCs were cultured onto the GPP, VSCM, or plastic for 3, 7, and 14 days. The proliferation and/or viability were measured by cell counting kit-8 assay and resazurin-based toxicity assay. Cell morphology and adhesion were evaluated by microscopy. The gene expression of collagen type I, alpha1 (COL1A1), α-smooth muscle actin (α-SMA), fibroblast growth factor (FGF-2), vascular endothelial growth factor A (VEGF-A), transforming growth factor beta-1 (TGF-β1), focal adhesion kinase (FAK), integrin beta-1 (ITG-β1), and interleukin 8 (IL-8) was investigated by RT-qPCR. The levels of VEGF-A, TGF-β1, and IL-8 proteins in conditioned media were tested by ELISA. GPP improved both cell proliferation and viability compared to VSCM. The cells grown on GPP exhibited a distinct morphology and attachment performance. COL1A1, α-SMA, VEGF-A, FGF-2, and FAK were positively modulated in hG-MSCs on GPP at different investigation times. GPP increased the gene expression of TGF-β1 but had no effect on protein production. The level of ITG-β1 had no significant changes in cells seeded on GPP at 7 days. At 3 days, notable differences in VEGF-A, TGF-β1, and α-SMA expression levels were observed between cells seeded on GPP and those on VSCM. Meanwhile, GPP showed higher COL1A1 expression compared to VSCM after 14 days, whereas VSCM demonstrated a more significant upregulation in the production of IL-8. Taken together, our data suggest that GPP electrospun nanofibers have great potential as substitutes for soft tissue regeneration in successful periodontal surgery.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10744501 | PMC |
http://dx.doi.org/10.3390/ma16247508 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!