Marine compounds constitute a diverse and invaluable resource for the discovery of bioactive substances with promising applications in the pharmaceutical development of anti-inflammatory and antibacterial agents. In this study, a comprehensive methodology was employed, encompassing pharmacophore modeling, virtual screening, in silico ADMET assessment (encompassing aspects of absorption, distribution, metabolism, excretion, and toxicity), and molecular dynamics simulations. These methods were applied to identify new inhibitors targeting the Hsp90 protein (heat shock protein 90), commencing with a diverse assembly of compounds sourced from marine origins. During the virtual screening phase, an extensive exploration was conducted on a dataset comprising 31,488 compounds sourced from the CMNPD database, characterized by a wide array of molecular structures. The principal objective was the development of structure-based pharmacophore models, a valuable approach when the pool of known ligands is limited. The pharmacophore model DDRRR was successfully constructed within the active sites of the Hsp90 crystal structure. Subsequent docking studies led to the identification of six compounds (CMNPD , , , , , and ) demonstrating substantial binding affinities, each with values below -8.3 kcal/mol. In the realm of in silico ADMET predictions, five of these compounds exhibited favorable pharmacokinetic properties. Furthermore, molecular dynamics simulations and total binding energy calculations using MM-PBSA indicated that these marine-derived compounds formed exceptionally stable complexes with the Hsp90 receptor over a 100-nanosecond simulation period. These findings underscore the considerable potential of these novel marine compounds as promising candidates for anticancer and antimicrobial drug development.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10871121PMC
http://dx.doi.org/10.3390/molecules28248074DOI Listing

Publication Analysis

Top Keywords

marine-derived compounds
8
anticancer antimicrobial
8
antimicrobial drug
8
drug development
8
marine compounds
8
virtual screening
8
silico admet
8
molecular dynamics
8
dynamics simulations
8
compounds sourced
8

Similar Publications

Marine-Derived Compound Targeting mTOR and FGFR-2: A Promising Strategy for Breast, Lung, and Colorectal Cancer Therapy.

Med Chem

January 2025

Integrated Genetics and Molecular Oncology Group, Department of Genetic Engineering, College of Engineering and Technology, SRM Institute of Science and Technology, Kattankulathur, Chennai, Tamilnadu, 603203, India.

Introduction: The marine habitat is a plentiful source of diverse, active compounds that are extensively utilised for their medicinal properties. Pharmaceutical trends have currently changed towards utilising a diverse range of goods derived from the marine environment.

Method: This study aimed to examine the inhibitory effects of bioactive chemicals derived from marine algae and bacteria.

View Article and Find Full Text PDF

Silver nanoparticles (AgNPs) are spherical particles with a number of specific and unique physical (such as surface plasmon resonance, high electrical conductivity and thermal stability) as well as chemical (including antimicrobial activity, catalytic efficiency and the ability to form conjugates with biomolecules) properties. These properties allow AgNPs to exhibit desired interactions with the biological system and make them prospective candidates for use in antibacterial and anticancer activities. AgNPs have a quenching capacity, which produces reactive oxygen species and disrupts cellular processes (such as reducing the function of the mitochondria, damaging the cell membrane, inhibiting DNA replication and altering protein synthesis).

View Article and Find Full Text PDF

NF-κB-inducing kinase (NIK) plays a pivotal role in regulating both the canonical and non-canonical NF-κB signaling pathways, driving the expression of proteins involved in inflammation, immune responses, and cell survival. Overactivation of NIK is linked to various pathological conditions, including chronic inflammation, autoimmune diseases, metabolic disorders, and cancer progression. As such, NIK represents a compelling target for therapeutic intervention in these diseases.

View Article and Find Full Text PDF

Two new compounds including one benzaldehyde () and one azaphilone () were isolated from the marine-derived fungus PSU-AMF89 together with nine known compounds (-). Their structures were determined by spectroscopic evidences. The absolute configuration of was established by comparison of the ECD data with those of the previously reported data of compound as well as the biosynthetic consideration.

View Article and Find Full Text PDF

Discovery of marine ent-eudesmane sesquiterpenoids as angiogenic inhibitors via suppressing VEGF-A/VEGFR2 signaling pathway.

Bioorg Chem

December 2024

Key Laboratory of Tropical Medicinal Resource Chemistry of Ministry of Education and Key Laboratory of Tropical Medicinal Plant Chemistry of Hainan Province, College of Chemistry and Chemical Engineering, Hainan Normal University, Haikou 571158, China. Electronic address:

Increasing evidence underscores the pivotal role of tumor angiogenesis for tumorigenesis and tumor metastasis. Inhibiting the tumor angiogenesis process is a promising therapeutic approach for cancer. In order to search for natural angiogenic inhibitors, the chemical constitutes of a marine-derived fungus Eutypella sp.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!