Drug bioavailability is a crucial aspect of pharmacology, affecting the effectiveness of drug therapy. Understanding how drugs are absorbed, distributed, metabolized, and eliminated in patients' bodies is essential to ensure proper and safe treatment. This publication aims to highlight the relevance of drug bioavailability research and its importance in therapy. In addition to biochemical activity, bioavailability also plays a critical role in achieving the desired therapeutic effects. This may seem obvious, but it is worth noting that a drug can only produce the expected effect if the proper level of concentration can be achieved at the desired point in a patient's body. Given the differences between patients, drug dosages, and administration forms, understanding and controlling bioavailability has become a priority in pharmacology. This publication discusses the basic concepts of bioavailability and the factors affecting it. We also looked at various methods of assessing bioavailability, both in the laboratory and in the clinic. Notably, the introduction of new technologies and tools in this field is vital to achieve advances in drug bioavailability research. This publication also discusses cases of drugs with poorly described bioavailability, providing a deeper understanding of the complex challenges they pose to medical researchers and practitioners. Simultaneously, the article focuses on the perspectives and trends that may shape the future of research regarding bioavailability, which is crucial to the development of modern pharmacology and drug therapy. In this context, the publication offers an essential, meaningful contribution toward understanding and highlighting bioavailability's role in reliable patient treatment. The text also identifies areas that require further research and exploration.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10745386 | PMC |
http://dx.doi.org/10.3390/molecules28248038 | DOI Listing |
Assay Drug Dev Technol
January 2025
Institute of Pharmaceutical Research, GLA University, Mathura, India.
J Med Chem
January 2025
Department Chemistry and Biochemistry, Clemens-Schöpf-Institute, Technical University Darmstadt, Darmstadt 64287, Germany.
In recent years, rationally designed macrocycles have emerged as promising therapeutic modalities for challenging drug targets. Macrocycles can improve affinity, selectivity, and pharmacokinetic (PK) parameters, possibly via providing semirigid, preorganized scaffolds. Nevertheless, how macrocyclization affects PK-relevant properties is still poorly understood.
View Article and Find Full Text PDFDrug Dev Ind Pharm
January 2025
Ege University, Faculty of Pharmacy, Department of Pharmaceutical Technology, Izmir, Turkey.
Backround: Prednisolone-Derived Corticosteroid (PDC), has anti-inflammatory activity in ocular administration. However, drug administration to the eye is extremely difficult due to the complex structure of the eye. Because of the ability of the eye to retain the drug and its physiology, the bioavailability of drugs applied to the eye is very low.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
State Key Laboratory of Bioactive Substance and Function of Natural Medicines, Institute of Materia Medica, Chinese Academy of Medical Sciences/Peking Union Medical College, Beijing, 100050, China.
The mechanism of multiple enzymes mediated drug metabolism in gut microbiota is still unclear. This study explores multiple enzyme interaction process of typhactyloside (TYP) with gut microbiota and its lipid-lowering pharmacological activity. TYP, with bioavailability of only 2.
View Article and Find Full Text PDFJ Biophotonics
January 2025
State Key Laboratory of Extreme Photonics and Instrumentations, Centre for Optical and Electromagnetic Research, College of Optical Science and Engineering, International Research Center for Advanced Photonics, Zhejiang University, Hangzhou, China.
Three-photon fluorescence (3PF) microscopy encounters significant challenges in biological research and clinical applications, primarily due to the limited availability of high-performance probes. We took a shortcut by exploring the excellent 3PF property of berberine hydrochloride (BH), a clinically utilized drug derived from the traditional Chinese medicine, Coptis. Capitalizing on its renal metabolism characteristics, we employed BH for in vivo 3PF microscopic imaging of the mouse kidney.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!