Ultra-Low-Power Non-Volatile Memory (UltraRAM), as a promising storage device, has attracted wide research attention from the scientific community. Non-volatile data retention in combination with switching at ≤2.6 V is achieved through the use of the extraordinary 2.1 eV conduction band offsets of InAs/AlSb and a triple-barrier resonant tunnelling structure. Along these lines, in this work, the structure, storage mechanism, and improvement strategies of UltraRAM were systematically investigated to enhance storage window clarity and speed performance. First, the basic structure and working principle of UltraRAM were introduced, and its comparative advantages over traditional memory devices were highlighted. Furthermore, through the validation of the band structure and storage mechanism, the superior performance of UltraRAM, including its low operating voltage and excellent non-volatility, was further demonstrated. To address the issue of the small storage window, an improvement strategy was proposed by reducing the thickness of the channel layer to increase the storage window. The feasibility of this strategy was validated by performing a series of simulation-based experiments. From our analysis, a significant 80% increase in the storage window after thinning the channel layer was demonstrated, providing an important foundation for enhancing the performance of UltraRAM. Additionally, the data storage capability of this strategy was examined under the application of short pulse widths, and a data storage operation with a 10 ns pulse width was successfully achieved. In conclusion, valuable insights into the application of UltraRAM in the field of non-volatile storage were provided. Our work paves the way for further optimizing the memory performance and expanding the functionalities of UltraRAM.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10745870 | PMC |
http://dx.doi.org/10.3390/mi14122207 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Shaanxi Key Laboratory of Energy Chemical Process Intensification, School of Chemical Engineering and Technology, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China.
Aqueous halogen batteries are gaining recognition for large-scale energy storage due to their high energy density, safety, environmental sustainability, and cost-effectiveness. However, the limited electrochemical stability window of aqueous electrolytes and the absence of desirable carbonaceous hosts that facilitate halogen redox reactions have hindered the advancement of halogen batteries. Here, a low-cost, high-concentration 26 m Li-B-C-O aqueous solution incorporating lithium bromide (LiBr), lithium chloride (LiCl), and lithium acetate (LiOAc) was developed for aqueous batteries, which demonstrated an expanded electrochemical stability window of .
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Key Laboratory of Low Carbon Energy and Chemical Engineering of Gansu Province, Lanzhou 730050, China.
Na superionic conductor (NASICON)-structure NaMnV(PO) (NVMP) electrode materials reveal highly attractive application prospects due to ultrahigh energy density originating from two-electron reactions. Nevertheless, NVMP also encounters challenges with its poor electronic conductivity, Mn dissolution, and Jahn-Teller distortion. To address this issue, utilizing N-doped carbon layers and carbon nanotubes (CNTs) for dual encapsulation enhances the material's electronic conductivity, creating an effective electron transport network that promotes the rapid diffusion and storage of Na.
View Article and Find Full Text PDFSmall
January 2025
Department of Chemistry, Eskisehir Osmangazi University (ESOGU), Eskisehir, 26040, Turkey.
Zinc-ion batteries (ZIBs) are emerged as a promising alternative for sustainable energy storage, offering advantages such as safety, low cost, and environmental friendliness. However, conventional aqueous electrolytes in ZIBs face significant challenges, including hydrogen evolution reaction (HER) and zinc dendrite formation, compromising their cycling stability and safety. These limitations necessitate innovative electrolyte solutions to enhance ZIB performance while maintaining sustainability.
View Article and Find Full Text PDFACS Nano
January 2025
Tianjin Key Lab for Rare Earth Materials and Applications, Center for Rare Earth and Inorganic Functional Materials, School of Materials Science and Engineering, National Institute for Advanced Materials, Nankai University, Tianjin, 300350, P. R. China.
Since the electrochemical potential of lithium metal was systematically elaborated and measured in the early 19th century, lithium-ion batteries with liquid organic electrolyte have been a key energy storage device and successfully commercialized at the end of the 20th century. Although lithium-ion battery technology has progressed enormously in recent years, it still suffers from two core issues, intrinsic safety hazard and low energy density. Within approaches to address the core challenges, the development of all-solid-state lithium-ion batteries (ASSLBs) based on halide solid-state electrolytes (SSEs) has displayed potential for application in stationary energy storage devices and may eventually become an essential component of a future smart grid.
View Article and Find Full Text PDFACS Omega
January 2025
Department of Chemistry, DAV College, Sector-10, Chandigarh 160011,India.
This study investigates solute-solvent interactions in ternary systems consisting of lithium trifluoromethanesulfonate (LiOTf) as the solute and tetraethylene glycol dimethyl ether (TEGDME) and 1,2-dimethoxyethane (DME) as solvents over a range of temperatures (293.15-313.15 K).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!