In this paper, a long-range hybrid waveguide for subwavelength confinement based on double SPP coupling is proposed. The hybrid waveguide consists of a metal-based cylindrical hybrid waveguide and a silver nanowire. There are two coupling regions in the waveguide structure that enhance mode coupling. Strong mode coupling enables the waveguide to exhibit both a small effective mode area (0.01) and an extremely long transmission length (700 μm). The figure of merit (FOM) of the waveguide can be as high as 4000. In addition, the cross-sectional area of the waveguide is only 500 nm × 500 nm, allowing optical operation in the subwavelength range, which helps enhance the miniaturization of optoelectronic devices. The excellent characteristics of the hybrid waveguide make it have potential applications in photoelectric integrated systems.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10745809 | PMC |
http://dx.doi.org/10.3390/mi14122167 | DOI Listing |
Adv Sci (Weinh)
January 2025
College of Optical Science and Engineering, Zhejiang University, Hangzhou, 310058, China.
Photonic manipulation of large-capacity data with the advantages of high speed and low power consumption is a promising solution for explosive growth demands in the era of post-Moore. A well-developed lithium-niobate-on-insulator (LNOI) platform has been widely explored for high-performance electro-optic (EO) modulators to bridge electrical and optical signals. However, the photonic waveguides on the x-cut LNOI platform suffer serious polarization-mode conversion/coupling issues because of strong birefringence, making it hard to realize large-scale integration.
View Article and Find Full Text PDFMicromachines (Basel)
November 2024
State Key Laboratory of Millimeter-Waves, School of Information Science and Engineering, Southeast University, Nanjing 210096, China.
This paper presents a bandpass filter (BPF) exploiting hybrid shielded eighth-mode circular substrate-integrated waveguide (SD-EMCSIW) and complementary split ring resonator (CSRR) resonators. The proposed BPF leverages the SD-EMCSIW resonator with a 45-degree angle to create a second-order BPF with a mixed electromagnetic coupling scheme. Detailed analyses of the related electromagnetic characteristics and operating mechanisms have been performed.
View Article and Find Full Text PDFNature
January 2025
imec, Leuven, Belgium.
Silicon photonics is a rapidly developing technology that promises to revolutionize the way we communicate, compute and sense the world. However, the lack of highly scalable, native complementary metal-oxide-semiconductor (CMOS)-integrated light sources is one of the main factors hampering its widespread adoption. Despite considerable progress in hybrid and heterogeneous integration of III-V light sources on silicon, monolithic integration by direct epitaxy of III-V materials remains the pinnacle of cost-effective on-chip light sources.
View Article and Find Full Text PDFWe demonstrate a hybrid integrated optical frequency comb amplifier composed of a silicon carbide microcomb and a lithium niobate waveguide amplifier, which generates a 10-dB on-chip gain for the C+L band microcombs under 1480-nm laser pumping and an 8-dB gain under 980-nm laser pumping. It will solve the problem of low output power of microcombs and can be applied in various scenarios such as optical communication, lidar, optical computing, astronomical detection, atomic clocks, and more.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Université de Bordeaux, CNRS, Bordeaux INP, ICMCB, UMR 5026, Pessac F-33600, France.
Femtosecond laser inscription in a ytterbium-doped silver-containing phosphate glass is demonstrated by achieving 3D highly localized laser-induced silver photochemistry. The produced fluorescent silver nanoclusters lead to high optical contrast in the visible range, showing that the coinsertion of Yb ions is not detrimental to the silver-based photochemistry. We demonstrate efficient energy transfer from these silver nanoclusters to the rare-earth Yb ions, leading to near-IR background-free fluorescence emission.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!