The unique double-cantilever beam structure and vibration mode of the tuning fork enable the measuring of fluid density and viscosity synchronously in a decoupling manner. Therefore, it is widely employed in oil and gas development and in petrochemical, food, textile, and other industries. In this paper, quality factors are used to characterize the energy losses of lithium niobate tuning forks when vibrating in a fluid, and the influence parameters, such as length, width, and thickness of the tuning fork arm, etc., of different quality factors are examined with a focus on the viscous quality factor of the fluid. The optimized design of lithium niobate tuning fork dimensions is carried out on this premise, and the analytical solution of the optimal dimension of the lithium niobate tuning fork in the air is obtained. Secondly, the optimal dimension of the lithium niobate tuning fork in fluids is given out by finite element simulation, and the sensitivity of the optimized fork to the viscosity of fluids is investigated. The results show that the optimized tuning fork has a higher quality factor, and thus has a larger parameter measurement range as well as being more sensitive to the change in the fluid density and viscosity. Therefore, the results are of great significance for guiding the preparation and practical application of lithium niobate tuning forks.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10745021 | PMC |
http://dx.doi.org/10.3390/mi14122138 | DOI Listing |
Materials (Basel)
January 2025
Tananaev Institute of Chemistry-Subdivision of the Federal Research Centre "Kola Science Centre of the Russian Academy of Sciences" (ICT KSC RAS), Apatity 184209, Murmansk Region, Russia.
We proposed and investigated a refinement of technology for obtaining Mg-doped LiNbO (LN) crystals by co-doping it with B. LN:Mg (5.0 mol%) is now the most widely used material based on bulk lithium niobate.
View Article and Find Full Text PDFMicromachines (Basel)
January 2025
School of Physics and Optoelectronic Engineering, Institute of Laser Engineering, Beijing University of Technology, Beijing 100124, China.
To enhance the end-face coupling efficiency of lithium niobate on insulator (LNOI) chips, in conjunction with current device fabrication processes, a stepped spot size converter (SSC) based on a special outer envelope profile has been proposed and investigated. This stepped SSC can reduce the coupling loss between the LNOI waveguide and a normal single-mode optical fiber. First, the output waveguide of a mode converter was proposed and simulated, in which the mode field had the biggest overlapping integral factor with a single-mode fiber (MDF ≈ 9.
View Article and Find Full Text PDFNature
January 2025
Institute of Physics, Swiss Federal Institute of Technology Lausanne (EPFL), Lausanne, Switzerland.
The integrated frequency comb generator based on Kerr parametric oscillation has led to chip-scale, gigahertz-spaced combs with new applications spanning hyperscale telecommunications, low-noise microwave synthesis, light detection and ranging, and astrophysical spectrometer calibration. Recent progress in lithium niobate (LiNbO) photonic integrated circuits (PICs) has resulted in chip-scale, electro-optic (EO) frequency combs, offering precise comb-line positioning and simple operation without relying on the formation of dissipative Kerr solitons. However, current integrated EO combs face limited spectral coverage due to the large microwave power required to drive the non-resonant capacitive electrodes and the strong intrinsic birefringence of LiNbO.
View Article and Find Full Text PDFSci Rep
January 2025
Guangdong Provincial Key Laboratory of Nanophotonic Functional Materials and Devices, South China Normal University, Guangzhou, 510631, People's Republic of China.
Prominent platforms based on thin-film lithium niobate (TFLN) are superior integrated-photonics platforms for efficient optical parametric amplification (OPA), however, previously few studies have been systematically reported the gain-boosting performance of TFLN waveguides compared to bulk LN waveguides. Here, we optimize two TFLN waveguides with dispersion engineering for high-efficiency and ultra-broadband gain of OPA, then report comparative results about the efficient ultra-broadband OPA of TFLN waveguides in the case of low loss, optimized waveguide length and pump power. Note that the efficient ultra-broadband OPA of TFLN waveguides is represented by the peak gain (71.
View Article and Find Full Text PDFACS Photonics
January 2025
Electrical and Computer Engineering Department, University of California, Santa Barbara, California 93106, United States.
Correlated photon-pair sources are key components for quantum computing, networking, synchronization, and sensing applications. Integrated photonics has enabled chip-scale sources using nonlinear processes, producing high-rate time-energy and polarization entanglement at telecom wavelengths with sub-100 microwatt pump power. Many quantum systems operate in the visible or near-infrared ranges, necessitating visible-telecom entangled-pair sources for connecting remote systems via entanglement swapping and teleportation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!