A milling force measurement tool system is designed with an elastic beam structure, which is divided into a two-end ring hoop compression sensor mode and a two-end square hoop compression sensor mode to improve the strain sensitivity. A simplified mechanical model of the elastic beam is established, and the relationship between the strain and force of the elastic beam under the action of three cutting force components is investigated, which can act a guide for subsequent milling force measurement tool system calibration tests. Thin-film strain sensors occupy a central position in the milling force measurement tool system, which consists of a substrate, transition layer, insulating layer and resistance grid layer. The resistance grid layer has a particularly significant effect on the thin-film strain sensor's performance. In order to further improve the sensitivity of thin-film strain sensors, the shapes of the substrate, the transition layer, the insulating layer and the resistance grid layer are optimized and studied. A new thin-film strain sensor is designed with a resistance grid beam constructed from an insulating layer and a resistive grid layer double-end-supported on the transition layer. The flow of the wet-etching process of thin-film strain sensors is studied and samples are obtained. The surface microforms of the sensor samples are observed by extended depth-of-field microscopy, confocal microscopy and atomic force microscopy. It can be seen that the boundary of the resistance grid layer pattern is tidy and has high dimensional accuracy, thus enabling the basic achievement of the expected effect of the design. The electrical performance of the samples is tested on an experimental platform that we built, and the results show that the resistive sensitivity coefficient of the samples is increased by about 20%, to 51.2%, compared with that of the flat thin-film strain sensor, which fulfils the design's requirements.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10745591 | PMC |
http://dx.doi.org/10.3390/mi14122133 | DOI Listing |
Nanoscale
January 2025
Laboratory of Quantum Functional Materials Design and Application, School of Physics and Electronic Engineering, Jiangsu Normal University, Xuzhou 221116, China.
Two-dimensional materials with a combination of a moderate bandgap, highly anisotropic carrier mobility, and a planar structure are highly desirable for nanoelectronic devices. This study predicts a planar BeP monolayer with hexagonal symmetry that meets the aforementioned desirable criteria using the CALYPSO method and first-principles calculations. Calculations of electronic properties demonstrate that the hexagonal BeP monolayer is an intrinsic semiconductor with a direct band gap of approximately 0.
View Article and Find Full Text PDFNat Nanotechnol
January 2025
Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, China.
The miniaturization of light-emitting diodes (LEDs) is pivotal in ultrahigh-resolution displays. Metal-halide perovskites promise efficient light emission, long-range carrier transport and scalable manufacturing for bright microscale LED (micro-LED) displays. However, thin-film perovskites with inhomogeneous spatial distribution of light emission and unstable surface under lithography are incompatible with the micro-LED devices.
View Article and Find Full Text PDFNano Lett
January 2025
Department of Materials Science and Engineering, Southern University of Science and Technology, Shenzhen, Guangdong 518055, China.
Enhancing both strength and plasticity simultaneously in nanostructured materials remains a significant challenge. While grain refinement is effective in increasing strength, it typically leads to reduced plasticity due to localized strain. In this study, we propose a novel design strategy featuring a dual-nano composite structure with grain boundary segregation to enhance the deformation stability of nanostructured materials.
View Article and Find Full Text PDFNano Lett
January 2025
Department of Materials Science and Engineering, Cornell University, Ithaca, New York 14853, United States.
Controlling the Mott transition through strain engineering is crucial for advancing the development of memristive and neuromorphic computing devices. Yet, Mott insulators are heterogeneous due to intrinsic phase boundaries and extrinsic defects, posing significant challenges to fully understanding the impact of microscopic distortions on the local Mott transition. Here, using a synchrotron-based scanning X-ray nanoprobe, we studied the real-space structural heterogeneity during the structural phase transition in a VO thin film.
View Article and Find Full Text PDFACS Mater Au
January 2025
Christian Doppler Laboratory for Soft Structures for Vibration Isolation and Impact Protection (ADAPT), School of Education, STEM Education, Johannes Kepler University Linz, 4040 Linz, Austria.
Soft materials play a pivotal role in the efficacy of stretchable electronics and soft robotics, and the interface between the soft devices and rigid counterparts is especially crucial to the overall performance. Herein, we develop polyimide-polydimethylsiloxane (PI-PDMS) copolymers that, in various ratios, combine on a molecular level to give a series of chemically similar materials with an extremely wide Young's modulus range starting from soft 2 MPa and transitioning to rigid polymers with up to 1500 MPa. Of particular significance is the copolymers' capacity to prepare seamless stiffness gradients, as evidenced by strain distribution analyses of gradient materials, due to them being unified on a molecular level.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!