Extreme environments, including hypersaline pools, often serve as biogeographical islands. Putative colonizers would need to survive transport across potentially vast distances of inhospitable terrain. Hyperhalophiles, in particular, are often highly sensitive to osmotic pressure. Here, we assessed whether hyperhalophiles are capable of rapidly colonizing an isolated and sterile hypersaline pool and the order of succession of the ensuing colonizers. A sterile and isolated 1 m hypersaline mesocosm pool was constructed on a rooftop in Charleston, SC. Within months, numerous halophilic lineages successfully navigated the 20 m elevation and the greater than 1 km distance from the ocean shore, and a vibrant halophilic community was established. All told, in a nine-month period, greater than a dozen halophilic genera colonized the pool. The first to arrive were members of the Haloarchaeal genus . Like a weed, the rapidly colonized and dominated the mesocosm community but were later supplanted by other hyperhalophilic genera. As a possible source of long-distance inoculum, both aerosol and water column samples were obtained from the Great Salt Lake and its immediate vicinity. Members of the same genus, , were preferentially enriched in the aerosol sample relative to the water column samples. Therefore, it appears that a diverse array of hyperhalophiles are capable of surviving aeolian long-distance transport and that some lineages, in particular, have possibly adapted to that strategy.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10745797 | PMC |
http://dx.doi.org/10.3390/microorganisms11122886 | DOI Listing |
PLoS One
January 2025
Departamento de Bioquímica y Medicina Molecular, Universidad Autónoma de Nuevo León, Monterrey, Nuevo León, México.
Introduction: The methicillin-resistant Staphylococcus aureus (MRSA) genome varies by geographical location. This study aims to determine the genomic characteristics of MRSA using whole-genome sequencing (WGS) data from medical centers in Mexico and to explore the associations between antimicrobial resistance genes and virulence factors.
Methods: This study included 27 clinical isolates collected from sterile sites at eight centers in Mexico in 2022 and 2023.
Vet Dermatol
January 2025
Department of Veterinary Clinic, School of Veterinary Medicine and Animal Science, São Paulo State University (UNESP), Botucatu, Brazil.
Background: Antimicrobial resistance is increasing each year. For example, in 2019 it was directly responsible for an estimated >1 million deaths. Additionally, the development of new drugs is much slower, generating enormous concerns about responses to infection in the future health scenario.
View Article and Find Full Text PDFInfect Drug Resist
January 2025
Center for Infectious Diseases Research (CIDR) and WHO Collaborating Center for Reference and Research on Bacterial Pathogens, American University of Beirut, Beirut, Lebanon.
Introduction: Multidrug resistant (MDR) Gram-negative bacterial infections are considered a major public health threat. The objectives of this study were to describe the epidemiology, potential contributing factors, and antimicrobial resistance patterns associated with infections caused by MDR Gram-negative bacteria (GNB) in non-immunocompromised children and adolescents.
Methods: This was a retrospective observational study conducted at the American University of Beirut Medical Center (AUBMC) from 2009 to 2017.
Gynecol Obstet Invest
January 2025
Background Endometriosis-related infertility and its treatment with assisted reproductive technologies (ART) have been broadly researched. Yet, underlying mechanisms of infertility, particularly in the absence of tubal dysfunction, remain unclear. While the impact of inflammatory milieu on the ovary and/or endometrium has been indicated as a contributing factor, recent evidence from euploid transfers and donor cycles questions the extent of these effects.
View Article and Find Full Text PDFMol Immunol
January 2025
Department of Gastroenterology and Hepatology, Nantong Third People's Hospital, Affiliated Nantong Hospital 3 of Nantong University, Nantong, Jiangsu Province 226006, China. Electronic address:
Background: The intestinal mucosa of ulcerative colitis patients expresses high levels of interleukin 34, and mice lacking IL-34 have more severe DSS-induced experimental colitis. There are no studies on the effects of directly upregulating intestinal IL-34 on experimental colitis in mice.
Methods: The bacteria EcN/CSF-1 and EcN/IL-34, which express CSF-1 and IL-34, respectively, were genetically engineered from Escherichia coli Nissle 1917 (EcN).
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!