Changes in the Bacterial Communities of Biocomposites with Different Flame Retardants.

Life (Basel)

Department of Chemistry and Bioengineering, Faculty of Fundamental Sciences, Vilnius Gediminas Technical University (VILNIUS TECH), Saulėtekio al. 11, 10223 Vilnius, Lithuania.

Published: December 2023

In today's world, the use of environmentally friendly materials is strongly encouraged. These materials derive from primary raw materials of plant origin, like fibrous hemp, flax, and bamboo, or recycled materials, such as textiles or residual paper, making them suitable for the growth of microorganisms. Here, we investigate changes in bacterial communities in biocomposites made of hemp shives, corn starch, and either expandable graphite or a Flovan compound as flame retardants. Using Next Generation Sequencing (NGS), we found that after 12 months of incubation at 22 °C with a relative humidity of 65%, Proteobacteria accounted for >99.7% of the microbiome in composites with either flame retardant. By contrast, in the absence of flame retardants, the abundance of Proteobacteria decreased to 32.1%, while Bacteroidetes (36.6%), Actinobacteria (8.4%), and Saccharobacteria (TM7, 14.51%) appeared. Using the increasing concentrations of either expandable graphite or a Flovan compound in an LB medium, we were able to achieve up to a 5-log reduction in the viability of , , representatives of the and genera, the abundance of which varied in the biocomposites tested. Our results demonstrate that flame retardants act on both Gram-positive and Gram-negative bacteria and suggest that their antimicrobial activities also have to be tested when producing new compounds.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10744946PMC
http://dx.doi.org/10.3390/life13122306DOI Listing

Publication Analysis

Top Keywords

flame retardants
16
changes bacterial
8
bacterial communities
8
communities biocomposites
8
expandable graphite
8
graphite flovan
8
flovan compound
8
flame
5
biocomposites flame
4
retardants
4

Similar Publications

E-waste, a global environmental concern, particularly affects developing nations due to the rise in informal recycling practices. This leads to contamination of environmental matrices, posing threats to both ecosystems and human health. To assess this issue, we monitored brominated flame retardants (BFRs) in 164 samples (soil) from 32 informal e-waste operational locations and 9 background locations across nine mega cities of Pakistan from September 2020 to December 2021.

View Article and Find Full Text PDF

Fire Resistant Adhesive from Chitosan.

Biomacromolecules

January 2025

Department of Chemistry, Texas A&M University, College Station, Texas 77843, United States.

Chitosan is one of the most abundant biopolymers on earth. It is used as a nontoxic alternative in a wide range of medicines, packaging, adhesives, and flame retardants. Chitosan is poorly soluble in neutral or alkaline solutions, but it dissolves in solutions of weak acids, such as acetic acid or citric acid, both of which occur naturally.

View Article and Find Full Text PDF

Comparison of blending and bonding of phytic acid arginine salt and cellulose nanofibers on their synergistic flame-retardant effect in poly (butylene succinate).

Int J Biol Macromol

January 2025

School of Light Industry Science and Engineering, Beijing Technology and Business University, Beijing 100048, China; China Advanced Flame Retardant Engineering Technology Research Center for Light Industry, Beijing 100048, China; Engineering laboratory for halogen-free flame retardants for polymer materials in the petroleum and chemical industry, Beijing 100048, China.

In this study, cellulose nanofibers (CNFs) were utilized as a synergistic agent, and combined with phytic acid arginine salt (PaArg) via blending and bonding. The effects of these different binding techniques of CNFs and PaArg on the flame retardant and mechanical properties of poly (butylene succinate) (PBS) were explored. The results indicated that both blended and bonded CNFs and PaArg enabled PBS composites to achieve a UL 94 V-0 rating, with the limiting oxygen index (LOI) value of the composite exceeding 28 %.

View Article and Find Full Text PDF

Novel high-efficiency nano metal oxide based on phosphorus as smart flame retardants with multiple reactive for sustainable cotton-polyester fabrics.

Int J Biol Macromol

January 2025

Petrochemical Engineering Department, Faculty of Engineering, Pharos University, Alexandria, Egypt. Electronic address:

Textile materials are extensively used due to their advantageous properties; however, their inherent flammability presents significant safety risks, particularly in residential and historical settings. To mitigate these risks, the integration of flame-retardant agents into textile fabrics is essential for enhancing fire resistance and advancing sustainable development. In this study, cotton-polyester fabrics were treated with a flame-retardant composite containing nano graphene oxide (NGO), sodium hypophosphite dihydrate (SHFDH), and lignin (L).

View Article and Find Full Text PDF

Polybrominated diphenyl ethers (PBDEs) are flame retardants heavily utilized across plastic, textile and electronic industries. Although these PBDEs are effective in protecting property and human life from fire, their high production volumes have led PBDEs to become pervasive environmental contaminants and pose an ecological and health risk as high levels have been noted in environmental media including water and sediment, wildlife and human tissue. Here we investigate the developmental neurotoxicity of 2,2',4,4'-tetrabromodiphenyl ether (BDE-47), one of the more dominant PBDE congeners found in human tissue, on oligodendrocytes in the hindbrain and spinal cord.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!