A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Strain and Strain Recovery of Human Hair from the Nano- to the Macroscale. | LitMetric

In this study, in operandi SAXS experiments were conducted on samples of human hair with a varying degree of strain (2% within the elastic region and 10% beyond). Four different features in the SAXS patterns were evaluated: The intermediate filament distance perpendicular to and the distance from the meridional arc in the load direction, as well as the distances of the lipid bilayer peak in and perpendicular to the load direction. From the literature, one concludes that polar lipids in the cuticle are the origin of the lipid peak in the SAXS pattern, and this study shows that the observed strain in the lipids is much lower than in the intermediate filaments. We support these findings with SEM micrographs, which show that the scales in the cuticle deform much less than the cortex. The observed deformation of the intermediate filaments is very high, about 70% of the macrostrain, and the ratio of the transverse strain to the longitudinal strain at the nanoscale gives a Poisson ratio of ν = 0.44, which is typical for soft matter. This work also finds that by varying the time period between two strain cycles, the typical strain recovery time is about 1000 min, i.e., one day. After this period, the structure is nearly identical to the initial structure, which suggests an interpretation that this is the typical time for the self-healing of hair after mechanical treatment.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10744986PMC
http://dx.doi.org/10.3390/life13122246DOI Listing

Publication Analysis

Top Keywords

strain recovery
8
human hair
8
load direction
8
intermediate filaments
8
strain
7
strain strain
4
recovery human
4
hair nano-
4
nano- macroscale
4
macroscale study
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!