Foods
Heilongjiang Feihe Dairy Co., Ltd., Beijing 100015, China.
Published: December 2023
This study aimed to investigate the effects of the covalent binding of flaxseed protein (FP) and chlorogenic acid (CA) on the structure and functional properties of FP-CA complexes fabricated using the alkali method. The results suggested that the encapsulation efficiency of CA encapsulated by FP ranged from 66.11% to 72.20% and the loading capacity of CA increased with an increasing addition ratio of CA with a dose-dependent relationship, which increased from 2.34% to 10.19%. The particle size, turbidity, zeta potential and PDI of FP and the FP-CA complexes had no significant discrepancy. UV-Vis and fluorescence spectra showed the existence of the interaction between FP and CA. SEM images showed that the surface of the FP-0.35%CA complex had more wrinkles compared to FP. Differential scanning calorimetry analysis indicated the decomposition temperature of FP at 198 °C was higher than that (197 °C) of the FP-0.35%CA complex, implying that the stability of the FP-CA complexes was lower than FP. The functional properties suggested that the FP-CA complex with 1.40% CA had a higher water holding capacity (500.81%), lower oil holding capacity (273.495%) and lower surface hydrophobicity. Moreover, the FP-CA complexes had better antioxidant activities than that of FP. Therefore, this study provides more insights for the potential application of FP-CA covalent complexes in functional food processing.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10743109 | PMC |
http://dx.doi.org/10.3390/foods12244449 | DOI Listing |
Foods
December 2023
Heilongjiang Feihe Dairy Co., Ltd., Beijing 100015, China.
This study aimed to investigate the effects of the covalent binding of flaxseed protein (FP) and chlorogenic acid (CA) on the structure and functional properties of FP-CA complexes fabricated using the alkali method. The results suggested that the encapsulation efficiency of CA encapsulated by FP ranged from 66.11% to 72.
View Article and Find Full Text PDFElife
April 2021
Department of Infectious Diseases Virology, University Hospital Heidelberg, Heidelberg, Germany.
HIV-1 replication commences inside the cone-shaped viral capsid, but timing, localization, and mechanism of uncoating are under debate. We adapted a strategy to visualize individual reverse-transcribed HIV-1 cDNA molecules and their association with viral and cellular proteins using fluorescence and correlative-light-and-electron-microscopy (CLEM). We specifically detected HIV-1 cDNA inside nuclei, but not in the cytoplasm.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!
© LitMetric 2025. All rights reserved.