Tomato fruits are rich in flavonoids. This study explores the effect of transcription factor SlNOR-like1 on the accumulation of flavonoids in tomato fruits at different ripening stages. We used ultra-pressure liquid chromatography-tandem mass spectrometry (UPLC-MS/MS) to analyze wild-type (WT) and NOR-like1 CRISPR/Cas9-edited (NOR-like1) tomato fruits. A total of 50 flavonoid metabolites were accurately identified and determined in tomatoes. The flavonoid metabolic differences were observed among the different tomato sample groups using PCA and OPLS-DA analysis. There were 16 differential flavonoids (13 upregulated and 3 downregulated) identified between WT-GR (WT tomato at the green-ripening stage) and NOR-like1-GR (NOR-like1 tomato at the green-ripening stage), 9 differential flavonoids (six upregulated and three downregulated) identified between WT-BR3 (WT tomato at the color-breaking stage) and NOR-like1-BR3 (NOR-like1 tomato at the color-breaking stage), and 12 differential flavonoids (11 upregulated and 1 downregulated) identified between WT-BR9 (WT tomato at the red-ripening stage) and NOR-like1-BR9 (NOR-like1 tomato at the red-ripening stage). Rutin, nicotiflorin, naringenin chalcone, eriodictyol, and naringenin-7-glucoside were the five flavonoids with the highest content in the ripening stages (BR3 and BR9) in both WT and NOR-like1 tomato fruits. The overall flavonoid contents in WT tomato fruits changed little from GR to BR3 and decreased from BR3 to BR9; meanwhile, in the NOR-like1 tomato fruits, the total amounts of the flavonoids exhibited an increasing trend during all three ripening stages. The accumulation pattern of flavonoid metabolites in NOR-like1 tomato fruits differed from that in WT tomato fruits, especially in the later ripening process of BR9. The transcription factor SlNOR-like1 has an impact on the accumulation of flavonoids in tomato fruits. The results provide a preliminary basis for subsequent research into its regulatory mechanism and will be helpful for attaining future improvements in the nutritional quality and postharvest treatment of tomato fruits.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10742431 | PMC |
http://dx.doi.org/10.3390/foods12244445 | DOI Listing |
J Agric Food Chem
January 2025
College of Food Science and Engineering, Shandong Agricultural University, 61 Daizong Street, Tai'an 271018 Shandong, China.
Jasmonic acid (JA) is crucial for plant stress responses, which rely on intercellular jasmonate transport. However, JA transporters have not been fully identified, especially in tomato ( L.).
View Article and Find Full Text PDFInt J Food Microbiol
January 2025
College of Animal Science and Technology, Yangtze University, Jingzhou 434023, China. Electronic address:
This study investigated endophytic fungi isolated from the medicinal plant Panax notoginseng. Among these, the endophytic fungus SQ3, identified as Chaetomium globosum, was capable of reducing silver ions to form metallic silver nanoparticles. The green-synthesized silver nanoparticles (AgNPs) presented a distinct surface plasmon resonance peak at 424 nm, with particle sizes between 2.
View Article and Find Full Text PDFBioelectromagnetics
February 2025
Department of Crop Science, Universidade Estadual de Mato Grosso do Sul (UEMS), Cassilândia, Mato Grosso do Sul, Brazil.
Effects of 60 Hz non-uniform electromagnetic fields (EMFs) on the tomato (cv. L-05) seed germination, photosynthesis, and seedling growth under salt stress and laboratory conditions were investigated. A previous trial investigated the impact of salt stress levels (0, 40, 60, 80, and 100 mM NaCl) on tomato seeds, and the 100 mM NaCl level was selected to study the effects of EMFs in attenuating salinity stress on germination, physiology, and growth of tomato seedlings.
View Article and Find Full Text PDFPlant Cell Rep
January 2025
Engineering Research Center of National Forestry and Grassland Administration for Rosa Roxburghii, Agricultural College, Guizhou University, Guiyang, 550025, People's Republic of China.
RrUNE12 binds to the RrGGP2 promoter to facilitate biosynthesis of AsA in Rosa roxburghii fruit. Furthermore, RrUNE12 upregulates antioxidant-related genes and maintains ROS homeostasis, thereby improving tolerance to salt stress. L-ascorbic acid (AsA) plays an essential role in stress defense as a major antioxidant in plant cells.
View Article and Find Full Text PDFPlant Cell Rep
January 2025
College of Life Sciences, Nanjing Agricultural University, Nanjing, 210095, China.
Reducing endogenous CK levels accelerates fruit ripening in tomato by regulating ethylene biosynthesis and signalling pathway. Tomato is a typical climacteric fruit and is recognized as one of the most important horticultural crops globally. The ripening of tomato fruits is a complex process, highly regulated by phytohormones.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!