Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Single cell RNAseq has been a big leap in many areas of biology. Rather than investigating gene expression on a whole organism level, this technology enables scientists to get a detailed look at rare single cells or within their cell population of interest. The field is growing, and many new methods appear each year. We compared methods utilized in our core facility: Smart-seq3, PlexWell, FLASH-seq, VASA-seq, SORT-seq, 10X, Evercode, and HIVE. We characterized the equipment requirements for each method. We evaluated the performances of these methods based on detected features, transcriptome diversity, mitochondrial RNA abundance and multiplets, among others and benchmarked them against bulk RNA sequencing. Here, we show that bulk transcriptome detects more unique transcripts than any single cell method. While most methods are comparable in many regards, FLASH-seq and VASA-seq yielded the best metrics, e.g., in number of features. If no equipment for automation is available or many cells are desired, then HIVE or 10X yield good results. In general, more recently developed methods perform better. This also leads to the conclusion that older methods should be phased out, and that the development of single cell RNAseq methods is still progressing considerably.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10743076 | PMC |
http://dx.doi.org/10.3390/genes14122226 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!