Standard cytogenetic techniques (chromosomal banding analysis-CBA, and fluorescence in situ hybridization-FISH) show limits in characterizing complex chromosomal rearrangements and structural variants arising from two or more chromosomal breaks. In this study, we applied optical genome mapping (OGM) to fully characterize two cases of complex chromosomal rearrangements at high resolution. In case 1, an acute myeloid leukemia (AML) patient showing chromothripsis, OGM analysis was fully concordant with classic cytogenetic techniques and helped to better refine chromosomal breakpoints. The OGM results of case 2, a patient with non-Hodgkin lymphoma, were only partially in agreement with previous cytogenetic analyses and helped to better define clonal heterogeneity, overcoming the bias related to clonal selection due to cell culture of cytogenetic techniques. In both cases, OGM analysis led to the identification of molecular markers, helping to define the pathogenesis, classification, and prognosis of the analyzed patients. Despite extensive efforts to study hematologic diseases, standard cytogenetic methods display unsurmountable limits, while OGM is a tool that has the power to overcome these limitations and provide a cytogenetic analysis at higher resolution. As OGM also shows limits in defining regions of a repetitive nature, combining OGM with CBA to obtain a complete cytogenetic characterization would be desirable.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10742895PMC
http://dx.doi.org/10.3390/genes14122180DOI Listing

Publication Analysis

Top Keywords

complex chromosomal
12
chromosomal rearrangements
12
cytogenetic techniques
12
optical genome
8
genome mapping
8
standard cytogenetic
8
ogm analysis
8
helped better
8
cytogenetic
7
ogm
7

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!