Red perilla is an important medicinal plant used in Kampo medicine. The development of elite varieties of this species is urgently required. Medicinal compounds are generally considered target traits in medicinal plant breeding; however, selection based on compound phenotypes (i.e., conventional selection) is expensive and time consuming. Here, we propose genomic selection (GS) and marker-assisted selection (MAS), which use marker information for selection, as suitable selection methods for medicinal plants, and we evaluate the effectiveness of these methods in perilla breeding. Three breeding populations generated from crosses between one red and three green perilla genotypes were used to elucidate the genetic mechanisms underlying the production of major medicinal compounds using quantitative trait locus analysis and evaluating the accuracy of genomic prediction (GP). We found that GP had a sufficiently high accuracy for all traits, confirming that GS is an effective method for perilla breeding. Moreover, the three populations showed varying degrees of segregation, suggesting that using these populations in breeding may simultaneously enhance multiple target traits. This study contributes to research on the genetic mechanisms of the major medicinal compounds of red perilla, as well as the breeding efficiency of this medicinal plant.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10742415 | PMC |
http://dx.doi.org/10.3390/genes14122137 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!