Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Automated milking systems (AMSs) already incorporate a variety of milk monitoring and sensing equipment, but the sensitivity, specificity, and positive predictive value of clinical mastitis (CM) detection remain low. A typical symptom of CM is the presence of clots in the milk during fore-stripping. The objective of this study was the development and evaluation of a deep learning model with image recognition capabilities, specifically a convolutional neural network (NN), capable of detecting such clots on pictures of the milk filter socks of the milking system, after the phase in which the first streams of milk have been discarded. In total, 696 pictures were taken with clots and 586 pictures without. These were randomly divided into 60/20/20 training, validation, and testing datasets, respectively, for the training and validation of the NN. A convolutional NN with residual connections was trained, and the hyperparameters were optimized based on the validation dataset using a genetic algorithm. The integrated gradients were calculated to explain the interpretation of the NN. The accuracy of the NN on the testing dataset was 100%. The integrated gradients showed that the NN identified the clots. Further field validation through integration into AMS is necessary, but the proposed deep learning method is very promising for the inline detection of CM on AMS farms.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10740463 | PMC |
http://dx.doi.org/10.3390/ani13243783 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!