Severe community-acquired pneumonia (sCAP) is the most frequent admission for acute respiratory failure in intensive care medicine. Observational studies have found a correlation between patients who were admitted with CAP and the development of cardiovascular events. The risk of acute myocardial damage in patients with CAP is particularly high within the first 30 days of hospitalization. Multicenter prospective cohort analysis conducted in consecutive patients admitted to an ICU with microbiologically confirmed diagnoses of sCAP. The aim was to determine any structural cardiac damage detected by advanced imagining techniques (cardiac MRI) and cardiac biomarkers in patients with sCAP. The patients were stratified, according to their etiology, into pneumococcal or not-pneumococcal sCAP. The primary outcome was cardiac damage at day 5 and 7 of clinical presentation. A total of 23 patients were consecutively and prospectively enrolled for two winter periods. No significant differences were observed between the median troponin when comparing the pneumococcal vs. non-pneumococcal. The incidence of myocardial damage was numerically higher in the pneumococcal subgroup (70% vs. 50%, = 0.61) on day 5 and on day 7 (53% vs. 40%, = 0.81) but did not achieve significance. Confirming a correlation between the biomarkers of cell damage and the biomarkers of myocardial damage, only a positive and significant correlation was observed between h-FABP and DNA on day 1 (r = 0.74; < 0.01) and day 3 (r = 0.83; < 0.010). Twenty cardiac MRIs were performed on the 23 patients (87%). No presence of fibrosis was observed in any of the studies carried out within the first 15 days of admission. No significant myocardial damage was found in patients with sCAP independent of the bacterial etiology in accordance with biomarker alterations (Troponin and/or h-FABP) or cardiac MRI. Using cardiac MRI, we could not find any presence of myocardial fibrosis within the first 15 days of admission.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10740668PMC
http://dx.doi.org/10.3390/antibiotics12121710DOI Listing

Publication Analysis

Top Keywords

myocardial damage
16
cardiac mri
12
severe community-acquired
8
community-acquired pneumonia
8
pneumonia scap
8
patients
8
patients admitted
8
damage patients
8
cardiac damage
8
mri cardiac
8

Similar Publications

Neutrophil-derived apoptotic body membranes-fused exosomes targeting treatment for myocardial infarction.

Regen Biomater

December 2024

Department of Cardiovascular Surgery of the First Affiliated Hospital & Institute for Cardiovascular Science, Suzhou Medical College of Soochow University, Soochow University, Suzhou 215006, P. R. China.

Myocardial infarction (MI) poses a substantial threat to human health, prompting extensive research into effective treatment modalities. Preclinical studies have demonstrated the therapeutic potential of mesenchymal stem cell-derived exosomes for cardiac repair. Despite their promise, the inherent limitations of natural exosomes, mainly their restricted targeting capabilities, present formidable barriers to clinical transformation.

View Article and Find Full Text PDF

The recurrence of atrial fibrillation (AF) in patients after successful radiofrequency catheter ablation (RFCA) appears to be an unresolved clinical issue and needs to be clearly elucidated. There are many factors associated with AF recurrence, such as duration of AF, male sex, concomitant heart failure, hemodynamic parameters, chronic obstructive pulmonary disease, hypertension, obstructive sleep apnea, hyperthyroidism, smoking and obesity. However, the inflammatory changes are strongly associated with electrical and structural cardiac remodeling, cardiac damage, myocardial fibrotic changes, microvascular dysfunction and altered reparative response.

View Article and Find Full Text PDF

Objectives: Cardiac biomarkers are useful for the diagnostic and prognostic assessment of myocardial injury (MI) and heart failure. By measuring specific proteins released into the bloodstream during heart stress or damage, these biomarkers help clinicians detect the presence and extent of heart injury and tailor appropriate treatment plans. This study aims to provide robust biological variation (BV) data for cardiac biomarkers in athletes, specifically focusing on those applied to detect or exclude MI, such as myoglobin, creatine kinase-myocardial band (CK-MB) and cardiac troponins (cTn), and those related to heart failure and cardiac dysfunction, brain natriuretic peptide (BNP) and N-terminal brain natriuretic pro-peptide (NT-proBNP).

View Article and Find Full Text PDF

Synaptotagmin-1 attenuates myocardial programmed necrosis and ischemia/reperfusion injury through the mitochondrial pathway.

Cell Death Dis

January 2025

Key Laboratory of Cellular Physiology at Shanxi Medical University, Ministry of Education, and the Department of Physiology, School of Basic Medicine, Shanxi Medical University, Taiyuan, China.

Programmed necrosis/necroptosis greatly contributes to the pathogenesis of cardiac disorders including myocardial infarction, ischemia/reperfusion (I/R) injury and heart failure. However, the fundamental mechanism underlying myocardial necroptosis, especially the mitochondria-dependent death pathway, is poorly understood. Synaptotagmin-1 (Syt1), a Ca sensor, is originally identified in nervous system and mediates synchronous neurotransmitter release.

View Article and Find Full Text PDF

Background: Myocardial ischemia-reperfusion (I/R) injury refers to cell damage that occurs as a consequence of the restoration of blood circulation following reperfusion therapy for cardiovascular diseases, and it is a primary cause of myocardial infarction. The search for nove therapeutic targets in the context of I/R injury is currently a highly active area of research. p70 ribosomal S6 kinase (S6K1) plays an important role in I/R induced necrosis, although the specific mechanisms remain unclear.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!