Cell therapy represents a promising approach to the treatment of neurological diseases, offering potential benefits not only by cell replacement but also through paracrine secretory activities. However, this approach includes a number of limiting factors, primarily related to safety. The use of conditioned stem cell media can serve as an equivalent to cell therapy while avoiding its disadvantages. The present study was a comparative investigation of the antioxidant, neuroprotective and neurotrophic effects of conditioned media obtained from neuronal and glial progenitor cells (NPC-CM and GPC-CM) on the PC12 cell line in vitro. Neuronal and glial progenitor cells were obtained from iPSCs by directed differentiation using small molecules. GPC-CM reduced apoptosis, ROS levels and increased viability, expressions of the antioxidant response genes and in a model of glutamate-induced oxidative stress. The neurotrophic effect was evidenced by a change in the morphology of pheochromocytoma cells to a neuron-like phenotype. Moreover, neurite outgrowth, expression of , , , genes and increased levels of the corresponding MAP2 and TUBB3 proteins. Treatment with NPC-CM showed moderate antiapoptotic effects and improved cell viability. This study demonstrated the potential application of CM in the field of regenerative medicine.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10741670PMC
http://dx.doi.org/10.3390/biom13121784DOI Listing

Publication Analysis

Top Keywords

neuronal glial
12
glial progenitor
12
neurotrophic effects
8
conditioned media
8
cell therapy
8
progenitor cells
8
cell
6
comparative study
4
study protective
4
protective neurotrophic
4

Similar Publications

Microglial polarization and ferroptosis are important pathological features in Alzheimer's disease (AD). Ghrelin, a brain-gut hormone, has potential neuroprotective effects in AD. This study aimed to explore the potential mechanisms by which ghrelin regulates the progression of AD, as well as the crosstalk between microglial polarization and ferroptosis.

View Article and Find Full Text PDF

Background: A neuroinflammatory disease such as Alzheimer's disease, presents a significant challenge in neurotherapeutics, particularly due to the complex etiology and allostatic factors, referred to as CNS stressors, that accelerate the development and progression of the disease. These CNS stressors include cerebral hypo-glucose metabolism, hyperinsulinemia, mitochondrial dysfunction, oxidative stress, impairment of neuronal autophagy, hypoxic insults and neuroinflammation. This study aims to explore the efficacy and safety of DAG-MAG-ΒHB, a novel ketone diester, in mitigating these risk factors by sustaining therapeutic ketosis, independent of conventional metabolic pathways.

View Article and Find Full Text PDF

Neurodegenerative diseases are characterized by progressive loss of neurons and persistent inflammation. Neurons are terminally differentiated cells, and lost neurons cannot be replaced since neurogenesis is restricted to only two neurogenic niches in the adult brain, whose neurogenic potential decreases with age. In this regard, the astrocytes reprogramming into neurons may represent a promising strategy for restoring the lost neurons and rebuilding neural circuits.

View Article and Find Full Text PDF

Lipopolysaccharides (LPS) are bacterial mediators of neuroinflammation that have been detected in close association with pathological protein aggregations of Alzheimer's disease. LPS induce the release of cytokines by microglia and mediate the upregulation of inducible nitric oxide synthase (iNOS)-a mechanism also associated with amyloidosis. Curcumin is a recognized natural medicine but has extremely low bioavailability.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!