Over the past decade, genetic engineering has witnessed a revolution with the emergence of a relatively new genetic editing tool based on RNA-guided nucleases: the CRISPR/Cas9 system. Since the first report in 1987 and characterization in 2007 as a bacterial defense mechanism, this system has garnered immense interest and research attention. CRISPR systems provide immunity to bacteria against invading genetic material; however, with specific modifications in sequence and structure, it becomes a precise editing system capable of modifying the genomes of a wide range of organisms. The refinement of these modifications encompasses diverse approaches, including the development of more accurate nucleases, understanding of the cellular context and epigenetic conditions, and the re-designing guide RNAs (gRNAs). Considering the critical importance of the correct performance of CRISPR/Cas9 systems, our scope will emphasize the latter approach. Hence, we present an overview of the past and the most recent guide RNA web-based design tools, highlighting the evolution of their computational architecture and gRNA characteristics over the years. Our study explains computational approaches that use machine learning techniques, neural networks, and gRNA/target interactions data to enable predictions and classifications. This review could open the door to a dynamic community that uses up-to-date algorithms to optimize and create promising gRNAs, suitable for modern CRISPR/Cas9 engineering.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10741458 | PMC |
http://dx.doi.org/10.3390/biom13121698 | DOI Listing |
Bioengineered
December 2025
Department of BioMedical Bigdata (BK21) and Research Institute of Life Sciences, Gyeongsang National University, Jinju, Republic of Korea.
Gene editing is emerging as a powerful tool for introducing novel functionalities in mushrooms. While CRISPR/Cas9-induced double-strand breaks (DSBs) typically rely on non-homologous end joining (NHEJ) for gene disruption, precise insertion of heterologous DNA in mushrooms is less explored. Here, we evaluated the efficacy of inserting donor DNAs (8-1008 bp) with or without homologous arms at Cas9-gRNA RNP-induced DSBs.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
January 2025
Chair of Microbiology, Technical University of Munich, TUM School of Life Science, Emil-Ramann-Str. 4, 85354, Freising, Germany.
The anaerobic bacterium Clostridium cellulovorans is a promising candidate for the sustainable production of biofuels and platform chemicals due to its cellulolytic properties. However, the genomic engineering of the species is hampered because of its poor genetic accessibility and the lack of genetic tools. To overcome this limitation, a protocol for triparental conjugation was established that enables the reliable transfer of vectors for markerless chromosomal modification into C.
View Article and Find Full Text PDFMol Ther Nucleic Acids
March 2025
NYU Cardiovascular Research Center, NYU Grossman School of Medicine, New York, NY 100016, USA.
Altered protein conformation can cause incurable neurodegenerative disorders. Mutations in , the gene encoding neuroserpin, can alter protein conformation resulting in cytotoxic aggregation leading to neuronal death. Familial encephalopathy with neuroserpin inclusion bodies (FENIB) is a rare autosomal dominant progressive myoclonic epilepsy that progresses to dementia and premature death.
View Article and Find Full Text PDFArch Endocrinol Metab
January 2025
Universidade de São Paulo Instituto de Ciências Biomédicas Departamento de Biologia Celular e do Desenvolvimento São PauloSP Brasil Departamento de Biologia Celular e do Desenvolvimento, Instituto de Ciências Biomédicas, Universidade de São Paulo, São Paulo, SP, Brasil.
Modulating the expression of a coding or noncoding gene is a key tool in scientific research. This strategy has evolved methodologically due to advances in cloning approaches, modeling/algorithms in short hairpin RNA (shRNA) design for knockdown efficiency, and biochemical modifications in RNA synthesis, among other developments. Overall, these modifications have improved the ways to either reduce or induce the expression of a given gene with efficiency and facility for implementation in the lab.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
Triticeae Research Institute, Sichuan Agricultural University, Chengdu, 611130, China.
TaWI12 is a member of the wound-induced (WI) protein family, which has been implicated in plant stress responses and developmental processes. Wheat (Triticum aestivum L.) is a crucial staple crop upon which human sustenance relies.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!