Ising Ladder with Four-Spin Plaquette Interaction in a Transverse Magnetic Field.

Entropy (Basel)

Departamento de Física, Centro de Ciências Exatas e da Natureza CCEN, Universidade Federal da Paraíba, Cidade Universitária, João Pessoa 58051-970, PB, Brazil.

Published: December 2023

The spin-1/2 quantum transverse Ising model, defined on a ladder structure, with nearest-neighbor and four-spin interaction on a plaquette, was studied by using exact diagonalization on finite ladders together with finite-size-scaling procedures. The quantum phase transition between the ferromagnetic and paramagnetic phases has then been obtained by extrapolating the data to the thermodynamic limit. The critical transverse field decreases as the antiferromagnetic four-spin interaction increases and reaches a multicritical point. However, the exact diagonalization approach was not able to capture the essence of the dimer phase beyond the multicritical transition.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10742738PMC
http://dx.doi.org/10.3390/e25121665DOI Listing

Publication Analysis

Top Keywords

four-spin interaction
8
exact diagonalization
8
ising ladder
4
ladder four-spin
4
four-spin plaquette
4
plaquette interaction
4
interaction transverse
4
transverse magnetic
4
magnetic field
4
field spin-1/2
4

Similar Publications

Ising Ladder with Four-Spin Plaquette Interaction in a Transverse Magnetic Field.

Entropy (Basel)

December 2023

Departamento de Física, Centro de Ciências Exatas e da Natureza CCEN, Universidade Federal da Paraíba, Cidade Universitária, João Pessoa 58051-970, PB, Brazil.

The spin-1/2 quantum transverse Ising model, defined on a ladder structure, with nearest-neighbor and four-spin interaction on a plaquette, was studied by using exact diagonalization on finite ladders together with finite-size-scaling procedures. The quantum phase transition between the ferromagnetic and paramagnetic phases has then been obtained by extrapolating the data to the thermodynamic limit. The critical transverse field decreases as the antiferromagnetic four-spin interaction increases and reaches a multicritical point.

View Article and Find Full Text PDF

The ground state, entropy, and magnetic Grüneisen parameter of the antiferromagnetic spin-1/2 Ising-Heisenberg model on a double sawtooth ladder are rigorously investigated using the classical transfer-matrix technique. The model includes the XXZ interaction between the interstitial Heisenberg dimers, the Ising coupling between nearest-neighbor spins of the legs and rungs, and additional cyclic four-spin Ising term in each square plaquette. For a particular value of the cyclic four-spin exchange, we found in the ground-state phase diagram of the Ising-Heisenberg ladder a quadruple point, at which four different ground states coexist together.

View Article and Find Full Text PDF

Manipulating two-dimensional magnetic states electric field and pressure.

Phys Chem Chem Phys

August 2023

National Laboratory of Solid State Microstructures, Nanjing University, Nanjing 210093, China.

Topological spin configurations have been an intriguing topic due to the exotic transport properties and promising applications in spintronic devices. The discovery of two-dimensional (2D) magnetic materials such as CrI provides new platforms for manipulating magnetic structures. Here, by first-principles calculations and Monte Carlo methods, we investigated the exchange interaction and magnetic states of 2D van der Waals ferromagnetic/ferroelectric heterostructure CrI/InSe.

View Article and Find Full Text PDF

We have performed tunnel transport spectroscopy on a quantum dot (QD) molecule proximitized by a superconducting contact. In such a system, the scattering between QD spins and Bogoliubov quasiparticles leads to the formation of Yu-Shiba-Rusinov (YSR) states within the superconducting gap. In this work, we investigate interactions appearing when one- and two-electron spin states in a double-QD energetically align with the superconducting gap edge.

View Article and Find Full Text PDF

Magnetic skyrmion is a topologically stable particle-like swirling spin texture potentially suitable for high-density information bit, which was first observed in noncentrosymmetric magnets with Dzyaloshinskii-Moriya interaction. Recently, nanometric skyrmion has also been discovered in centrosymmetric rare-earth compounds, and the identification of their skyrmion formation mechanism and further search of nontrivial spin textures are highly demanded. Here, magnetic structures in a prototypical skyrmion-hosting centrosymmetric tetragonal magnet GdRu Si is exhaustively studied by performing the resonant X-ray scattering experiments.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!