A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Hypoxia Aggravates Neuron Ferroptosis in Early Brain Injury Following Subarachnoid Hemorrhage via NCOA4-Meditated Ferritinophagy. | LitMetric

Hypoxia Aggravates Neuron Ferroptosis in Early Brain Injury Following Subarachnoid Hemorrhage via NCOA4-Meditated Ferritinophagy.

Antioxidants (Basel)

Department of Neurosurgery, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210000, China.

Published: December 2023

The occurrence of early brain injury (EBI) significantly contributes to the unfavorable prognosis observed in patients with subarachnoid hemorrhage (SAH). During the process of EBI, a substantial quantity of iron permeates into the subarachnoid space and brain tissue, thereby raising concerns regarding its metabolism. To investigate the role and metabolic processes of excessive iron in neurons, we established both in vivo and in vitro models of SAH. We substantiated that ferritinophagy participates in iron metabolism disorders and promotes neuronal ferroptosis using an in vivo model, as detected by key proteins such as ferritin heavy chain 1, glutathione peroxidase 4, autophagy related 5, nuclear receptor coactivator 4 (NCOA4), LC3B, and electron microscopy results. By interfering with NCOA4 expression in vitro and in vivo, we confirmed the pivotal role of elevated NCOA4 levels in ferritinophagy during EBI. Additionally, our in vitro experiments demonstrated that the addition of oxyhemoglobin alone did not result in a significant upregulation of NCOA4 expression. However, simultaneous addition of oxyhemoglobin and hypoxia exposure provoked a marked increase in NCOA4 expression and heightened ferritinophagy in HT22 cells. Using YC-1 to inhibit hypoxia signaling in in vitro and in vitro models effectively attenuated neuronal ferroptosis. Collectively, we found that the hypoxic microenvironment during the process of EBI exaggerates iron metabolism abnormalities, leading to poor prognoses in SAH. The findings also offer a novel and potentially effective foundation for the treatment of SAH, with the aim of alleviating hypoxia.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10740655PMC
http://dx.doi.org/10.3390/antiox12122097DOI Listing

Publication Analysis

Top Keywords

ncoa4 expression
12
early brain
8
brain injury
8
subarachnoid hemorrhage
8
process ebi
8
vitro models
8
iron metabolism
8
neuronal ferroptosis
8
addition oxyhemoglobin
8
vitro
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!