Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
In response to the pressing need for robust disease diagnosis from gastrointestinal tract (GIT) endoscopic images, we proposed FLATer, a fast, lightweight, and highly accurate transformer-based model. FLATer consists of a residual block, a vision transformer module, and a spatial attention block, which concurrently focuses on local features and global attention. It can leverage the capabilities of both convolutional neural networks (CNNs) and vision transformers (ViT). We decomposed the classification of endoscopic images into two subtasks: a binary classification to discern between normal and pathological images and a further multi-class classification to categorize images into specific diseases, namely ulcerative colitis, polyps, and esophagitis. FLATer has exhibited exceptional prowess in these tasks, achieving 96.4% accuracy in binary classification and 99.7% accuracy in ternary classification, surpassing most existing models. Notably, FLATer could maintain impressive performance when trained from scratch, underscoring its robustness. In addition to the high precision, FLATer boasted remarkable efficiency, reaching a notable throughput of 16.4k images per second, which positions FLATer as a compelling candidate for rapid disease identification in clinical practice.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10741161 | PMC |
http://dx.doi.org/10.3390/bioengineering10121416 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!