Clavicle midshaft fractures are mostly treated surgically by open internal reduction with a superior or anteroinferior plate and screws or by intramedullary nailing. Screw positioning plays a critical role in determining the stress distribution. There is a lack of data on the screw position and the appropriate number of cortices required for plate fixation. The aim of this study is to evaluate the mechanical behavior of an anterior plate implanted in a fractured bone subjected to 120° of lateral elevation compared to a healthy clavicle using numerical simulations. Contact forces and moments used were obtained from literature data and applied to the healthy and fractured finite element models. Stresses of about 9 MPa were found on the healthy clavicle, while values of about 15 MPa were calculated on the plate of the fractured one; these stress peaks were reached at about 30° and 70° of elevation when the stress shielding on the clavicle sums all the three components of the solicitation: compression, flexion, and torsion. The stress distribution in a clavicle fracture stabilized with plates and screws is influenced by several factors, including the plate's position and design, the type of screw, and the biomechanical forces applied during movements.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10740883PMC
http://dx.doi.org/10.3390/bioengineering10121402DOI Listing

Publication Analysis

Top Keywords

stress distribution
12
distribution clavicle
8
clavicle fracture
8
plate fixation
8
finite element
8
healthy clavicle
8
clavicle
6
plate
5
screw
4
screw stress
4

Similar Publications

A mouse coccygeal intervertebral disc degeneration model with tail-looping constructed using a suturing method.

Animal Model Exp Med

January 2025

Department of Orthopaedic Surgery, The 909th Hospital, School of Medicine, Xiamen University, Zhangzhou, China.

Backgroud: Intervertebral disc degeneration (IDD) is one of the common degenerative diseases. Due to ethical constraints, it is difficult to obtain sufficient research on humans, so the use of an animal model of IDD is very important to clarify the pathogenesis and treatment mechanism of the disease.

Methods: In this study, thirty 2-month-old mice were selected for operation to establish a coccygeal IDD model.

View Article and Find Full Text PDF

Ergothioneine (ERG) is a natural sulfur-containing amino acid found in many organisms, including humans. It accumulates at high concentrations in red blood cells and is distributed to various organs, including the brain. ERG has numerous health benefits and antioxidant capabilities, and it has been linked to various human physiological processes, such as anti-inflammatory, neuroprotective, and anti-aging effects.

View Article and Find Full Text PDF

Unveiling Microscopic Variations during Photodynamic Therapy via Polarity-Responsive Fluorescence Lifetime Imaging.

Anal Chem

January 2025

Institute of Optical Materials and Chemical Biology, Guangxi Key Laboratory of Electrochemical Energy Materials, School of Chemistry and Chemical Engineering, Guangxi University, Nanning, Guangxi 530004, P. R. China.

Photodynamic therapy is a highly promising method for cancer adjuvant treatment. However, the current research on the microscopic changes during the photodynamic therapy process is still quite limited, which seriously impedes the deep understanding of the procedure. For this purpose, a novel polarity-responsive probe, , with excellent mitochondrial targeting and anchoring capabilities has been rationally designed and synthesized.

View Article and Find Full Text PDF

Introduction: Ischaemic heart disease (IHD) and cerebrovascular disease are leading causes of morbidity and mortality worldwide. Cerebral small vessel disease (CSVD) is a leading cause of dementia and stroke. While coronary small vessel disease (coronary microvascular dysfunction) causes microvascular angina and is associated with increased morbidity and mortality.

View Article and Find Full Text PDF

Lipid droplets (LDs), serving as the convergence point of energy metabolism and multiple signaling pathways, have garnered increasing attention in recent years. Different cell types within the central nervous system (CNS) can regulate energy metabolism to generate or degrade LDs in response to diverse pathological stimuli. This article provides a comprehensive review on the composition of LDs in CNS, their generation and degradation processes, their interaction mechanisms with mitochondria, the distribution among different cell types, and the roles played by these cells-particularly microglia and astrocytes-in various prevalent neurological disorders.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!