Extruded bioprinting is widely used for the biomanufacturing of personalized, complex tissue structures, which requires biomaterial inks with a certain viscosity to enable printing. However, there is still a lack of discussion on the controllable preparation and printability of biomaterial inks with different viscosities. In this paper, biomaterial inks composed of gelatin, sodium alginate, and methylcellulose were utablesed to investigate the feasibility of adjustment of rheological properties, thereby analyzing the effects of different rheological properties on the printing process. Based on the response surface methodology, the relationship between the material components and the rheological properties of biomaterial inks was discussed, followed by the prediction of the rheological properties of biomaterial inks. The prediction accuracies of the power-law index and consistency coefficient could reach 96% and 79%, respectively. The material group can be used to prepare biomaterial inks with different viscosity properties in a wide range. Latin hypercube sampling and computational fluid dynamics were used to analyze the effects of different rheological properties and extrusion pressure on the flow rate at the nozzle. The relationship between the rheological properties of the biomaterial ink and the flow rate was established, and the simulation results showed that the changes in the rheological properties of the biomaterial ink in the high-viscosity region resulted in slight fluctuations in the flow rate, implying that the printing process for high-viscosity biomaterial inks may have better versatility. In addition, based on the characteristics of biomaterial inks, the printing process was optimized from the planning of the print pattern to improve the location accuracy of the starting point, and the length accuracy of filaments can reach 99%. The effect of the overlap between the fill pattern and outer frame on the print quality was investigated to improve the surface quality of complex structures. Furthermore, low- and high-viscosity biomaterial inks were tested, and various printing protocols were discussed for improving printing efficiency or maintaining cell activity. This study provides feasible printing concepts for a wider range of biomaterials to meet the biological requirements of cell culture and tissue engineering.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10740413PMC
http://dx.doi.org/10.3390/bioengineering10121358DOI Listing

Publication Analysis

Top Keywords

biomaterial inks
36
rheological properties
28
printing process
16
properties biomaterial
16
biomaterial ink
12
flow rate
12
biomaterial
11
properties
9
inks
9
viscosity properties
8

Similar Publications

Protocol for the fabrication of self-standing (nano)cellulose-based 3D scaffolds for tissue engineering.

STAR Protoc

January 2025

Graz University of Technology, Institute for Chemistry and Technology of Biobased System (IBioSys), Stremayrgasse 9, 8010 Graz, Austria; Institute of Automation, Faculty of Electrical Engineering and Computer Science, University of Maribor, Maribor, Slovenia; Members of the European Polysaccharide Network of Excellence (EPNOE).

Three-dimensional (3D) and porous scaffolds made from nanocellulosic materials hold significant potential in tissue engineering (TE). Here, we present a protocol for fabricating self-standing (nano)cellulose-based 3D scaffolds designed for in vitro testing of cells from skin and cartilage tissues. We describe steps for preparation of nanocellulose ink, scaffold formation using 3D printing, and freeze-drying.

View Article and Find Full Text PDF

Dual effects of exogenous ferulic acid bound in rice starch as 3D printable food ink: Structural fluidity and antimicrobial activity.

Int J Biol Macromol

January 2025

College of Biosystems Engineering and Food Science, National-Local Joint Engineering Laboratory of Intelligent Food Technology and Equipment, Zhejiang Key Laboratory for Agro-Food Processing, Integrated Research Base of Southern Fruit and Vegetable Preservation Technology, Fuli Institute of Food Science, Zhejiang University, Hangzhou 310058, China; Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314102, China. Electronic address:

Starch-ferulic acid (FA) composites have been developed for medical and food fields, while little focus is caused on their use in functional products by 3D printing. In this work, dynamic high-pressure microfluidization was employed to treat starch at various concentrations, for preparing modified starch-FA composites. The high-performance liquid chromatography results showed that an increased starch concentration was conducive to a high yield of composite with enhanced binding of FA.

View Article and Find Full Text PDF

Lightweight 3D-printed chitosan/MXene aerogels for advanced electromagnetic shielding, energy harvesting, and thermal management.

Carbohydr Polym

March 2025

Microcellular Plastics Manufacturing Laboratory, Department of Mechanical and Industrial Engineering, University of Toronto, 5 King's College Road, Toronto, Ontario M5S 3G8, Canada. Electronic address:

This study focuses on the fabrication of 3D-printed chitosan/TiCT-MXene aerogels with varying MXene concentrations (1, 2, 5, and 10 wt%) using the direct ink writing (DIW) method. The inks were freeze-dried to form aerogels, and FTIR and XRD analyses confirmed interactions between chitosan and MXene molecules, leading to increased spacing between MXene nanosheets. Rheological testing showed improved shear-thinning behavior, enhancing printability.

View Article and Find Full Text PDF

Tattoos are widespread in the population. Tattoo inks, which contain a variety of ingredients among them hazardous compounds such as polyaromatic hydrocarbons, heavy metals and nanoparticles and that are made for injection into the skin, are not dermatologically tested. New testing systems for evaluation of biocompatibility of tattoo inks as composite products and the tattooing process itself are needed.

View Article and Find Full Text PDF

Precisely crafted hierarchical architectures found in naturally derived biomaterials underpin the exceptional performance and functionality showcased by the host organism. In particular, layered helical assemblies composed of cellulose, chitin, or collagen serve as the foundation for some of the most mechanically robust and visually striking natural materials. By utilizing structured materials in additive manufacturing techniques such as extrusion-based 3D printing, the intrinsic deformation process can be used to implement bottom-up design of printed constructs, offering the potential to create intricate macroscale geometries with embedded nanoscale functionality.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!