A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Removal of two antidepressant active pharmaceutical ingredients from hospital wastewater by polystyrene-coated magnetite nanoparticles-assisted batch adsorption process. | LitMetric

This study employed simple polystyrene-coated magnetite nanoparticles (PS@MNPs)-assisted batch adsorption process for the removal of two antidepressant active ingredients (amitriptyline HCl and sertraline HCl) from hospital wastewater. Dominant parameters of the adsorption process including pH, adsorbent amount, and contact period were optimized through the univariate approach to enhance the adsorption efficiency. Upon reaching optimum adsorption conditions, equilibrium experiments were performed by spiking the adsorbates in hospital wastewater in the concentration range of 100-2000 μg/L. The concentrations of the adsorbates in the effluent were calculated using the matrix-matching calibration strategy to enhance the accuracy of quantification. A validated switchable solvent-based liquid phase microextraction (SS-LPME) method was employed to enrich the two active pharmaceutical ingredients (APIs) prior to sensitive determination with GC-MS (gas chromatography-mass spectrometry). The equilibrium data were mathematically modeled employing the Langmuir and Freundlich adsorption isotherm models. The isotherm constants were calculated, and the results showed that both the isotherm models fitted well with the experimental data. The efficient and simple batch adsorption strategy reported in this study was successfully employed to remove amitriptyline HCl and sertraline HCl from hospital wastewater at low concentrations.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10661-023-12231-4DOI Listing

Publication Analysis

Top Keywords

hospital wastewater
16
batch adsorption
12
adsorption process
12
removal antidepressant
8
antidepressant active
8
active pharmaceutical
8
pharmaceutical ingredients
8
polystyrene-coated magnetite
8
study employed
8
amitriptyline hcl
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!