Photosensitization, a powerful oxidation reaction, offers significant potential for wastewater treatment in the context of industrial process water reuse. This environmentally friendly process can be crucial in reducing water consumption and industrial pollution. The ultimate goal is to complete process water reuse, creating a closed-loop system that preserves the inherent value of water resources. The photosensitized oxidation reaction hinges on three essential components: the photosensitizer, visible light, and oxygen. In this study, we assess the performance of three distinct materials-silica, chitosan, and spongin-as carrier materials for incorporating the phthalocyanine photosensitizer (ZnPcS) in the heterogenous photosensitization process. Among the three materials under study, chitosan emerged as the standout performer in reactor hydrodynamic performance. In the photooxidation process, the photosensitizer ZnPcS exhibited notable efficacy, resulting in a significant reduction of approximately 20 to 30% in the remaining COD concentration of the cellar wastewater. Chitosan demonstrated exceptional hydrodynamic characteristics and displayed a favorable response to pH adjustments within the range of 8 to 10, outperforming the other two carrier materials. To further enhance the efficiency of continuous operation, exploring methods for mitigating photosensitizer bleaching within the reaction medium and investigating the impact of different pH values on the process optimization would be prudent.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s11356-023-31178-0 | DOI Listing |
Environ Res
January 2025
Jiangsu Water Conservancy Construction Engineering co.,ltd, Yangzhou, P. R. China.
Biochar is one of the ways for carbon storage, pollution control and biosolid reuse. Aquatic plant reeds are widely used in nutrient removal in wetlands and have huge biomass. Nonetheless, little is known regarding the effects of reed-based biochar on sediments.
View Article and Find Full Text PDFRSC Adv
January 2025
Institute of Molecular Science, Key Laboratory of Chemical Biology and Molecular Engineering of Ministry of Education, Shanxi University Taiyuan 030006 China
CO conversion and reuse technology are crucial for alleviating environmental stress and promoting carbon cycling. Reverse water gas shift (RWGS) reaction can transform inert CO into active CO. Molybdenum carbide (MoC) has shown good performance in the RWGS reaction, and different crystalline phases exhibit distinct catalytic behaviors.
View Article and Find Full Text PDFEnviron Sci (Camb)
December 2024
Department of Computer Science, Virginia Tech Blacksburg VA 24061 USA
The persistence of pharmaceuticals and personal care products (PPCPs) through wastewater treatment and resulting contamination of aquatic environments and drinking water is a pervasive concern, necessitating means of identifying effective treatment strategies for PPCP removal. In this study, we employed machine learning (ML) models to classify 149 PPCPs based on their chemical properties and predict their removal wastewater and water reuse treatment trains. We evaluated two distinct clustering approaches: C1 (clustering based on the most efficient individual treatment process) and C2 (clustering based on the removal pattern of PPCPs across treatments).
View Article and Find Full Text PDFData Brief
February 2025
Department of Biomedical Engineering, University of Massachusetts, 1 University Ave., Lowell, MA 01854, USA.
This dataset comprises a comprehensive collection of videos and images illustrating the fluid dynamics of swallowing and aspiration in a patient-specific pharyngolaryngeal model with varying epiglottis angles. The data also includes the physical properties of the fluids used, comprising dynamic viscosity, surface tension, and contact angle. Videos under varying swallowing conditions were collected to investigate the mechanisms underlying aspiration.
View Article and Find Full Text PDFHeliyon
January 2025
Department of Materials Engineering and Chemistry, Faculty of Civil Engineering, Czech Technical University in Prague, Thákurova 7, 166 29, Prague 6, Czech Republic.
Human activities result in sediment accumulation, so the reservoirs gradually lose their functionality, impacting their ability to manage large flood inflows, supply water, and generate hydroelectric power. Therefore, periodic removal of sediments from water reservoirs is essential to maintain functionality. Notwithstanding, the management of dredged sediments is a multifaceted process that involves careful consideration of environmental, regulatory, and economic factors to ensure their responsibility and sustainable handling.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!