The Free Energy Principle (FEP) is a normative computational framework for iterative reduction of prediction error and uncertainty through perception-intervention cycles that has been presented as a potential unifying theory of all brain functions (Friston, 2006). Any theory hoping to unify the brain sciences must be able to explain the mechanisms of decision-making, an important cognitive faculty, without the addition of independent, irreducible notions. This challenge has been accepted by several proponents of the FEP (Friston, 2010; Gershman, 2019). We evaluate attempts to reduce decision-making to the FEP, using Lucas' (2005) meta-theory of the brain's contextual constraints as a guidepost. We find reductive variants of the FEP for decision-making unable to explain behavior in certain types of diagnostic, predictive, and multi-armed bandit tasks. We trace the shortcomings to the core theory's lack of an adequate notion of subjective preference or "utility", a concept central to decision-making and grounded in the brain's biological reality. We argue that any attempts to fully reduce utility to the FEP would require unrealistic assumptions, making the principle an unlikely candidate for unifying brain science. We suggest that researchers instead attempt to identify contexts in which either informational or independent reward constraints predominate, delimiting the FEP's area of applicability. To encourage this type of research, we propose a two-factor formal framework that can subsume any FEP model and allows experimenters to compare the contributions of informational versus reward constraints to behavior.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.cortex.2023.11.013 | DOI Listing |
Biomed Microdevices
January 2025
Department of Electrical and Computer Engineering, Rutgers University, Piscataway, NJ, 08854, USA.
Wearable and implantable biosensors have rapidly entered the fields of health and biomedicine to diagnose diseases and physiological monitoring. The use of wired medical devices causes surgical complications, which can occur when wires break, become infected, generate electrical noise, and are incompatible with implantable applications. In contrast, wireless power transfer is ideal for biosensing applications since it does not necessitate direct connections between measurement tools and sensing systems, enabling remote use of the biosensors.
View Article and Find Full Text PDFSci Rep
January 2025
Laboratory for Thin Film Energy Materials, Department of Materials and Environmental Technology, School of Engineering, Tallinn University of Technology, Ehitajate tee 5, Tallinn, 19086, Estonia.
NiO, a wide band gap hole-transporting material (HTM), is gaining attention in photovoltaics due to its optical transparency, chemical stability, and favourable band alignment with absorber. This study uses NiO nanoparticle-based HTM in semi-transparent SbS solar cells via a simple chemical precipitation method. We optimised NiO layer by varying precursor solution concentration and studied its impact on optical and structural properties, composition of nanoparticles and subsequent effect on the performance of semi-transparent SbS solar cell.
View Article and Find Full Text PDFJ Neurochem
January 2025
The Laboratory of Molecular Gerontology, National Institute on Aging, National Institutes of Health, Bethesda, Maryland, USA.
Alzheimer disease is a neurodegenerative pathology-modifying mitochondrial metabolism with energy impairments where the effects of biological sex and DNA repair deficiencies are unclear. We investigated the therapeutic potential of dietary ketosis alone or with supplemental nicotinamide riboside (NR) on hippocampal intermediary metabolism and mitochondrial bioenergetics in older male and female wild-type (Wt) and 3xTgAD-DNA polymerase-β-deficient (3xTg/POLβ) (AD) mice. DNA polymerase-β is a key enzyme in DNA base excision repair (BER) of oxidative damage that may also contribute to mitochondrial DNA repair.
View Article and Find Full Text PDFActa Histochem
January 2025
School of Chemistry, University of Glasgow, Glasgow G12 8QQ, UK.
In recent years, a great interest has been focused on the prebiotic origin of nucleic acids and life on Earth. An attractive idea is that life was initially based on an autocatalytic and autoreplicative RNA (the RNA-world). RNA duplexes are right-handed helical chains with antiparallel orientation, but the rationale for these features is not yet known.
View Article and Find Full Text PDFBiochim Biophys Acta Biomembr
January 2025
Department of Molecular Pathobiology, New York University, New York, NY, USA. Electronic address:
Inorganic polyphosphate (polyP) is a polymer that consists of a series of orthophosphates connected by high-energy phosphoanhydride bonds, like those found in ATP. In mammalian mitochondria, polyP has been linked to the activation of the mitochondrial permeability transition pore (mPTP). However, the details of this process are not completely understood.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!