The continuous increase of nitrate (NO) level in rivers is a hot issue in the world. However, the driving mechanism of high NO level in large rivers is still lacking, which has limited the use of river water and increased the cost of water treatment. In this study, multiple isotopes and source resolution models are applied to identify the driving mechanism of high NO level and key processes of nitrogen cycling in the lower reaches of the Yellow River (LRYR). The major sources of NO were sewage and manure (SAM) in the low-flow season and soil nitrogen (SN) and chemical fertilizer (CF) in the high-flow season. Nitrification was the most key process of nitrogen cycling in the LRYR. However, in the biological removal processes, denitrification may not occur significantly. The temporal variation of contributions of NO sources were estimated by a source resolution model in the LRYR. The proportional contributions of SAM and CF to NO in the low-flow and high-flow season were 32.5%-52.3%, 44.2%-46.2% and 36.0%-40.8%, 54.9%-56.9%, respectively. The driving mechanisms of high NO level were unreasonable sewage discharge, intensity rainfall runoff, nitrification and lack of nitrate removal capacity. To control the NO concentration, targeted measures should be implemented to improve the capacity of sewage and wastewater treatment, increase the utilization efficiency of nitrogen fertilizer and construct ecological engineering. This study deepens the understanding of the driving mechanism of high nitrate level and provides a vital reference for nitrogen pollution control in rivers to other area of the world.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jes.2023.05.001 | DOI Listing |
J Neurosci
January 2025
Department of Biology, University of Miami, Coral Gables, FL 33143 USA
Neuroendocrine cells react to physical, chemical, and synaptic signals originating from tissues and the nervous system, releasing hormones that regulate various body functions beyond the synapse. Neuroendocrine cells are often embedded in complex tissues making direct tests of their activation mechanisms and signaling effects difficult to study. In the nematode worm , four uterine-vulval (uv1) neuroendocrine cells sit above the vulval canal next to the egg-laying circuit, releasing tyramine and neuropeptides that feedback to inhibit egg laying.
View Article and Find Full Text PDFMol Metab
January 2025
Leibniz Institute for Resilience Research, 55122 Mainz Germany; Institute of Physiological Chemistry, University Medical Center of the Johannes Gutenberg University, 55128 Mainz Germany. Electronic address:
Overconsumption of palatable food and energy accumulation are evolutionary mechanisms of survival when food is scarce. This innate mechanism becomes detrimental in obesogenic environment promoting obesity and related comorbidities, including mood disorders. The endocannabinoid system favors energy accumulation and regulates reward circuits.
View Article and Find Full Text PDFHorm Metab Res
January 2025
Department of Intensive Care Medicine, Guy's and St Thomas' NHS Foundation Trust, London, United Kingdom of Great Britain and Northern Ireland.
Neutrophil extracellular traps (NETs) are large structures composed of chromatin, histones and granule-derived proteins released extracellularly by neutrophils. They are generally considered to be a part of the antimicrobial defense strategy, preventing the dissemination of pathogens. However, overproduction of NETs or their ineffective clearance can drive various pathologies, many of which are associated with advanced age and involve uncontrolled inflammation, oxidative, cardiovascular and neurodegenerative stress as underlying mechanisms.
View Article and Find Full Text PDFJ Environ Manage
January 2025
College of Geographic Science and Tourism, Xinjiang Normal University, Urumqi, 830017, China. Electronic address:
The changes in lake ice phenology (LIP) can intuitively reflect the climate evolution in the regions where lakes are located, serving as an important indicator of climate change. The Tianshan Mountains, situated at the southern edge of freezing lakes in the Northern Hemisphere, are a crucial water resource base in Xinjiang and support significant ecosystems closely related to human activities. In the context of intensified climate change, this study focuses on the geographical location, altitude, and water quality differences among large lake groups in the mid-latitude region of Xinjiang, aiming to explore the characteristics of LIP changes in these lakes and their responses to driving factors, thereby providing a basis for effective environmental management and protection.
View Article and Find Full Text PDFWater Res
December 2024
Department of Technical Biogeochemistry, Helmholtz Centre for Environmental Research - UFZ, Leipzig 04318, Germany. Electronic address:
The complex sorption mechanisms of carbon adsorbents for the diverse group of persistent, mobile, and potentially toxic contaminants (PMs or PMTs) present significant challenges in understanding and predicting adsorption behavior. While the development of quantitative predictive tools for adsorbent design often relies on extensive training data, there is a notable lack of experimental sorption data for PMs accompanied by detailed sorbent characterization. Rather than focusing on predictive tool development, this study aims to elucidate the underlying mechanisms of sorption by applying data analysis methods to a high-quality dataset.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!