AI Article Synopsis

  • Somatic mutations are common in patients with unexplained low blood cell counts (CCUS) and are linked to a higher risk of blood cancers and lower survival rates.
  • This study analyzed a large group of CCUS patients over several years to understand their outcomes, using samples from a clinical diagnostic lab in the UK.
  • Out of 2,083 eligible patients, 400 were confirmed with CCUS, with the most frequently mutated genes being TET2, SRSF2, and DNMT3A.

Article Abstract

Background: Somatic mutations are frequently reported in individuals with cytopenia but without a confirmed haematological diagnosis (clonal cytopenia of undetermined significance; CCUS). These patients have an increased risk of progression to a myeloid malignancy and worse overall survival than those with no such mutations. To date, studies have been limited by retrospective analysis or small patient numbers. We aimed to establish the natural history of CCUS by prospectively investigating outcome in a large, well defined patient cohort.

Methods: This prospective cohort study was conducted at the Haematological Malignancy Diagnostic Service, a diagnostic laboratory in Leeds, UK. Patients aged at least 18 years who were referred for investigation of cytopenia were eligible for inclusion; those with a history of myeloid malignancy were not eligible. Targeted sequencing was conducted alongside routine clinical testing. Baseline mutation analysis was then correlated with the main study outcomes: longitudinal blood counts, disease progression to a myeloid malignancy, and overall survival with a median follow-up of 4·54 years (IQR 4·03-5·04). Data were collected manually from hospital records or extracted from laboratory or clinical outcome databases.

Findings: Bone marrow samples from 2348 patients were received at the Haematological Malignancy Diagnostic Service between July 1, 2014, and July 31, 2016. Of these, 2083 patients (median age 72 years [IQR 63-80, range 18-99]; 854 [41·0%] female and 1229 [59·0%] male) met the inclusion criteria and had samples of sufficient quality for further analysis. 598 (28·7%) patients received a diagnosis on the basis of their biopsy sample, whereas 1485 (71·3%) samples were classified as non-diagnostic; of these, CCUS was confirmed in 400 (26·9%) patients (256 [64·0%] male and 144 [36·0%] female). TET2, SRSF2, and DNMT3A were the most frequently mutated genes in patients with CCUS, with 320 (80%) of 400 patients harbouring a mutation in at least one of these genes. Age (p<0·0001), sex (p=0·0027), and mutations in ASXL1 (p=0·0009), BCOR (p=0·0056), and TP53 (p=0·0055) correlated with a worse overall survival; however, the number of mutations was the strongest predictor for progression to a myeloid malignancy (two mutations, p=0·0024; three or more mutations, p=0·0004). Extended sequencing of samples from a subgroup of patients with sequential samples and no mutations in the initial myeloid gene panel showed recurrent mutations in both DDX41 and UBA1, suggesting that these genes should be included in clinical test panels.

Interpretation: Mutation analysis is advised in patients who have undergone bone marrow examination and have an otherwise-unexplained cytopenia. High-risk genetic mutations and increased numbers of mutations are predictive of both survival and progression within 5 years of presentation, warranting clinical surveillance and, when necessary, intervention.

Funding: MDS Foundation.

Download full-text PDF

Source
http://dx.doi.org/10.1016/S2352-3026(23)00340-XDOI Listing

Publication Analysis

Top Keywords

myeloid malignancy
12
patients
9
clonal cytopenia
8
cytopenia undetermined
8
undetermined significance
8
prospective cohort
8
cohort study
8
progression myeloid
8
haematological malignancy
8
malignancy diagnostic
8

Similar Publications

Despite the advances of CAR-T cells in certain hematological malignancies, mostly from B-cell derivations such as non-Hodgkin lymphomas, acute lymphoblastic leukemia and multiple myeloma, a significant portion of other hematological and non-hematological pathologies can benefit from this innovative treatment, as the results of clinical studies are demonstrating. The clinical application of CAR-T in the setting of acute T-lymphoid leukemia, acute myeloid leukemia, solid tumors, autoimmune diseases and infections has encountered limitations that are different from those of hematological B-cell diseases. To overcome these restrictions, strategies based on different molecular engineering platforms have been devised and will be illustrated below.

View Article and Find Full Text PDF

Mutations in the genes , , and cause three clinically overlapping thrombocytopenias characterized by a predisposition to hematological neoplasms. The gene, which encodes a protein involved in protein-protein interactions, is downregulated by RUNX1 during megakaryopoiesis. Mutations in 5'UTR of ANKRD26, leading to ANKRD26-RT, disrupt this regulation, resulting in the persistent expression of ANKRD26, which leads to impaired platelet biogenesis and an increased risk of leukemia.

View Article and Find Full Text PDF

The development of hepatic metastases is the leading cause of mortality in gastrointestinal (GI) cancers and substantial research efforts have been focused on elucidating the intricate mechanisms by which tumor cells successfully migrate to, invade, and ultimately colonize the liver parenchyma. Recent evidence has shown that perturbations in myeloid biology occur early in cancer development, characterized by the initial expansion of specific innate immune populations that promote tumor growth and facilitate metastases. This review summarizes the pathophysiology underlying the proliferation of myeloid cells that occurs with incipient neoplasia and explores the role of innate immune-host interactions, specifically granulocytes and neutrophil extracellular traps, in promoting hepatic colonization by tumor cells through the formation of the "premetastatic niche".

View Article and Find Full Text PDF

Background: Older adults with cancer are vulnerable to declines in muscle performance (e.g., strength, speed, duration of muscular contraction), which are associated with worse cancer-related outcomes.

View Article and Find Full Text PDF

Non-small cell lung cancer (NSCLC), half of which are lung adenocarcinoma (LUAD), is one of the most widely spread cancers in the world. Telomerase, which maintains telomere length and chromosomal integrity, enables cancer cells to avoid replicative senescence. When telomerase is inhibited, cancer cells' senescence began, preventing them from growing indefinitely.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!