Co-assembly of polymeric conjugates sensitizes neoadjuvant chemotherapy of triple-negative breast cancer with reduced systemic toxicity.

Acta Biomater

Department of Radiology, Huaxi MR Research Center (HMRRC), Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, Animal Experimental Center, West China Hospital, Sichuan University, Chengdu 610041, China; Functional and molecular imaging Key Laboratory of Sichuan Province, Key Laboratory of Transplant Engineering and Immunology, NHC, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu 610041, China. Electronic address:

Published: February 2024

Rational design of polymeric conjugates could greatly potentiate the combination therapy of solid tumors. In this study, we designed and prepared two polymeric conjugates (HT-DTX and PEG-YC-1), whereas the drugs were attached to the PEG via a linker sensitive to cathepsin B, over-expressed in TNBC. Stable nanostructures were formed by these two polymer prodrug conjugates co-assembly (PPCC). The stimuli-responsiveness of PPCC was confirmed, and the size shrinkage under tumor microenvironment would facilitate the penetration of PPCC into tumor tissue. In vitro experiments revealed the molecular mechanism for the synergistic effect of the combination of DTX and YC-1. Moreover, the systemic side effects were significantly diminished since the biodistribution of PPCC was improved after i.v. administration in vivo. In this context, the co-assembled nano-structural approach could be employed for delivering therapeutic drugs with different mechanisms of action to exert a synergistic anti-tumor effect against solid tumors, including triple-negative breast cancer. STATEMENT OF SIGNIFICANCE.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.actbio.2023.12.026DOI Listing

Publication Analysis

Top Keywords

polymeric conjugates
12
triple-negative breast
8
breast cancer
8
solid tumors
8
co-assembly polymeric
4
conjugates
4
conjugates sensitizes
4
sensitizes neoadjuvant
4
neoadjuvant chemotherapy
4
chemotherapy triple-negative
4

Similar Publications

Figure-eight macrocycles represent a fascinating class of π-conjugated units characterized by unique aesthetics and non-contact molecular crossing at the center. Despite progress in synthesis over the past century, research into inorganic, organic, and polymeric figure-eight materials remains in its infancy. Here we report the first examples of figure-eight covalent organic frameworks by condensing figure-eight knots to create extended porous figure-eight π architectures.

View Article and Find Full Text PDF

Densely populated macrocyclic dicobalt sites in ladder polymers for low-overpotential oxygen reduction catalysis.

Nat Commun

January 2025

College of Polymer Science and Engineering, State Key Laboratory of Polymer Materials Engineering, Sichuan University, 610065 Chengdu, China.

Dual-atom catalysts featuring synergetic dinuclear active sites, have the potential of breaking the linear scaling relationship of the well-established single-atom catalysts for oxygen reduction reaction; however, the design of dual-atom catalysts with rationalized local microenvironment for high activity and selectivity remains a great challenge. Here we design a bisalphen ladder polymer with well-defined densely populated binuclear cobalt sites on Ketjenblack substrates. The strong electron coupling effect between the fully-conjugated ladder structure and carbon substrates enhances the electron transfer between the cobalt center and oxygen intermediates, inducing the low-to-high spin transition for the 3d electron of Co(II).

View Article and Find Full Text PDF

Cyclodextrins (CDs) are cyclic polysaccharides characterized by their unique hollow structure, making them highly effective carriers for pharmaceutical agents. CD-based delivery systems are extensively utilized to enhance drug stability, increase solubility, improve oral bioavailability, and facilitate controlled release and targeted delivery. This review initially provides a concise overview of nano drug delivery systems, followed by a detailed introduction of the structural features and benefits of CDs.

View Article and Find Full Text PDF

Photodynamic therapy combined with quaternized chitosan antibacterial strategy for instant and prolonged bacterial infection treatment.

Carbohydr Polym

March 2025

Key Laboratory of Coal Conversion and New Carbon Materials of Hubei Province, Institute of Advanced Materials and Nanotechnology, School of Chemistry and Chemical Engineering, School of Medicine, Wuhan University of Science and Technology, Wuhan, China.

Drug-resistant bacterial infections represent a critical global public health challenge, driven largely by the misuse and overuse of antibiotics. Tackling the growing threat of bacterial resistance necessitates the development of innovative antibacterial agents that function independently of traditional antibiotics. In this study, novel antibacterial nano-micelles were rationally designed by conjugating quaternized chitosan with the photosensitizer chlorin e6.

View Article and Find Full Text PDF

This work describes the synthesis, characterization, and antibacterial properties of four bile acid-triclosan conjugates. The in vitro antibacterial activity of synthetic bile acid-triclosan conjugates was investigated against a panel of Gram-positive and Gram-negative bacteria. Conjugates and show high activity against (ATCC25922), with IC values of 2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!