Spruce wood and Typha (wetland plant) derived biochars pyrolyzed at 350 °C and 600 °C were tested for their sorption affinity for organic pollutants (diclofenac, methylparaben, benzotriazole and sodium 1-decanesulfonate) and nutrients (nitrate, ammonium, phosphate and boron) commonly found in greywater. Batch and column studies combined with molecular dynamics modelling determined the sorption capacity, kinetics, and described the underlying mechanisms. The spruce biochar (600 °C) exhibited the highest sorption capacity mainly for the tested organics. The dynamic test performed for spruce biochar (600 °C) showed that the magnitude of desorption was low, and the desorbed amount ranged between 3 and 11 %. Molecular dynamics modelling (a computational tool for elucidating molecular-level interactions) indicated that the increased sorption of nitrate and boron on spruce biochar (600 °C) could be attributed to hydrophobic interactions. The molecular dynamics shows that predominant adsorption of organic pollutants was governed by π-π stacking, with a minor role of hydrogen-bonding on the biochar surface. In summary, higher pyrolysis temperature biochar yielded greater adsorption capacity greywater borne contaminants and the reaction temperature (10-34 °C) and presence of anionic surfactant had a limited effect on the adsorption of organic pollutants, suggesting efficacious application of biochar in general for greywater treatment in nature-based systems.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.envpol.2023.123203DOI Listing

Publication Analysis

Top Keywords

molecular dynamics
16
organic pollutants
12
spruce biochar
12
biochar 600 °c
12
nature-based systems
8
dynamics modelling
8
sorption capacity
8
adsorption organic
8
biochar
6
adsorption
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!