Alopecia areata (AA) is an autoimmune-induced hair loss condition, by utilizing MNX, a hair growth-promoting compound. However, minoxidil (MNX) administration's efficacy is hindered by low bioavailability and adverse effects. To enhance its delivery, Trilayer Dissolving Microneedles (TDMN) are introduced, enabling controlled drug release. The study's primary was to establish a validated UV-Vis Spectrophotometer method for Minoxidil analysis in rat skin affected by alopecia areata. This method adheres to International Conference Harmonization (ICH) and FDA guidelines, encompassing accuracy, precision, linearity, quantification limit (QL), and detection limit (DL). The validation method was conducted through two approaches, namely UV region validation using PBS and the colorimetric method in the visible region (Vis). The validated approach is then employed for assessing in vitro release, ex vivo permeation, and in vivo pharmacokinetics. Results indicate superior MNX extraction recovery using methanol compared to acetonitrile. Method C (5mL methanol) is optimal, offering high recovery with minimal solvent usage. Precision assessments demonstrate %RSD values within MNX guidelines (≤15%), affirming accuracy and reproducibility. UV-Vis spectroscopy quantifies MNX integration into TDMN, using PVA-PVP, with concentrations aligning with ICH standards (95% to 105%). In conclusion, TDMN holds promise for enhancing MNX delivery, mitigating bioavailability and side effect challenges. The validated UV-Vis Spectrophotometer method effectively analyzes MNX in skin tissues, providing insights into AA treatment and establishing a robust analytical foundation for future studies.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.pharma.2023.12.006DOI Listing

Publication Analysis

Top Keywords

colorimetric method
8
trilayer dissolving
8
alopecia areata
8
validated uv-vis
8
uv-vis spectrophotometer
8
spectrophotometer method
8
method
7
mnx
7
application validated
4
validated spectrophotometric
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!