Theoretical study of the adsorption capacity of potentially toxic Cd, Pb, and Hg ions in hemicellulose matrices.

Int J Biol Macromol

Programa de Pós Graduação em Química, Universidade Federal do Tocantins (UFT), CEP 77, Gurupi, Tocantins 402-970, Brazil; Departamento de Química, Instituto Tecnológico de Aeronáutica (ITA), Praça Marechal Eduardo Gomes, 50, Vila das Acácias, São José dos Campos, SP CEP 12228-900, Brazil. Electronic address:

Published: February 2024

Hemicellulose is widely available in nature, is a sustainable resource and has a wide range of applications. Among them, adsorption stands out for the removal of potentially toxic ions. Thus, in the study, the adsorption of Cd, Pb and Hg ions in two hemicellulose matrices were elucidated through computational simulations using density functional theory. Molecular electrostatic potential and frontier molecular orbitals demonstrated whether the interactions could happen. Four interaction complexes were highlighted due to the interaction energy criteria, ΔE, ΔH and ΔG < 0.00 kcal mol, that is: Hm1 Pb (1); Hm2 Pb (3); Hm2Cd (4) and Hm2Hg (4) and the results show that they occur through physisorption. In structural parameter studies, interaction distances smaller than 3000 Å were identified, which ranged from 2.253 Å to 2.972 Å. From the analysis of the topological parameters of QTAIM, it was possible to characterize the intensities of the interactions, as well as their nature, which were partially covalent or electrostatic in nature. Finally, based on the theoretical results, it can be affirmed that the hemicellulose can interact with Cd, Pb and Hg ions, evidencing that this study can support further experimental essays to remove contaminants from effluents.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ijbiomac.2023.128894DOI Listing

Publication Analysis

Top Keywords

study adsorption
8
toxic ions
8
ions hemicellulose
8
hemicellulose matrices
8
theoretical study
4
adsorption capacity
4
capacity toxic
4
matrices hemicellulose
4
hemicellulose nature
4
nature sustainable
4

Similar Publications

Synthesis of zirconium-based metal-organic framework/gelatin aerogel for removing phosphate and fluoride from aqueous solutions.

Int J Biol Macromol

January 2025

Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea. Electronic address:

This study describes the preparation of novel hybrid aerogels derived from gelatin (Gel), incorporating Br-functionalized zirconium-based metal-organic framework (UiO-66-Br; MOF) as modifying agent to effectively eliminate phosphate and fluoride ions from aqueous environments. The adsorption performance of MOF decorated Gel (Gel-xMOF) hybrid aerogels was investigated under different conditions, including agitation time, adsorbent dosage, solution pH, initial phosphate and fluoride concentrations, coexisting ions, and temperature. The functional groups of the gelatin network, coupled with UiO-66-Br, enhanced the adsorption performance of phosphate and fluoride ions from aqueous solutions.

View Article and Find Full Text PDF

Fish scale gelatin/diatom biosilica composite hemostasis sponge with ultrafast dispersing and in situ gelation for hemorrhage control.

Int J Biol Macromol

January 2025

College of Marine Life Science, Ocean University of China, 5# Yushan Road, Qingdao 266003, Shandong Province, China; Sanya Oceanographic Institute, Ocean University of China, Floor 7, Building 1, Yonyou Industrial Park, Yazhou Bay Science & Technology City, Sanya, Hainan Province, China. Electronic address:

Rapid control of hemorrhage is vital in first-aid and surgery. As representative of emergency hemostatic materials, inorganic porous materials achieve rapid hemostasis through concentrating protein coagulation factors by water adsorption to accelerate the coagulation reaction process, however their efficacy is often limited by the insufficient contact of material with blood and the lack of blood clot strength. Herein, we report an ultrafast dispersing and in situ gelation sponge (SG/DB) based on anchoring interface effect for hemorrhage control using freeze drying method after mixing fish scale gel (SG) and tert-butyl alcohol (TBA) pre-crystallized diatom biosilica (DB).

View Article and Find Full Text PDF

Unveiling the drug delivery mechanism of graphene oxide dots at the atomic scale.

J Control Release

January 2025

Dipartimento di Scienza dei Materiali, Università degli Studi di Milano-Bicocca, via R. Cozzi 55, 20125 Milano, Italy; BioNanoMedicine Center NANOMIB, Università degli Studi di Milano-Bicocca, Italy. Electronic address:

Graphene oxide (GO) is an amphiphilic and versatile graphene-based nanomaterial that is extremely promising for targeted drug delivery, which aims to administer drugs in a spatially and temporally controlled manner. A typical GO nanocarrier features a polyethylene glycol coating and conjugation to an active targeting ligand. However, it is challenging to accurately model GO dots, because of their intrinsically complex and not unique structure.

View Article and Find Full Text PDF

Preparation of nitrogen-doped biocarbon from sewage sludge and pine sawdust for superior hydrogen sulfide removal: Experimental and DFT studies.

Environ Res

January 2025

Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, China; CAS Key Laboratory of Renewable Energy, Guangzhou 510640, China; Guangdong Provincial Key Laboratory of High-Quality Recycling of End-of-Life New Energy Devices, Guangzhou 510640, China. Electronic address:

Hydrogen sulfide (HS) is a major air pollutant posing a serious threat to both the environment and public health. In this study, a novel nitrogen-rich biocarbon that effectively removes HS was produced from a mixture of sewage sludge and pine sawdust using melamine as nitrogen source. Compared with pristine biocarbons, nitrogen (N)-doped biocarbons possessed an adjustable porosity, e.

View Article and Find Full Text PDF

Interfacial adsorption behavior of amine-functionalized MCM-41 for Mo(VI) capture from aqueous solution.

Environ Res

January 2025

School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China; Zhongyuan Critical Metals Laboratory, Zhengzhou University, Zhengzhou 450001, China; The Key Lab of Critical Metals Minerals Supernormal Enrichment and Extraction, Ministry of Education, Zhengzhou 450001, China.

Given the environmental and ecological risks posed by wastewater bearing Mo, the characteristics and microscopic interactions of existing silica-based adsorbents have not been thoroughly investigated, highlighting the need to enhance the porosity and chemical interactions of these materials. Considering the effectiveness of amino groups in binding metal oxyanions, this study investigates the adsorption performance and mechanism of amino-functionalized MCM-41 for Mo(VI), with the goal of efficiently remediating Mo-contaminated wastewater. MCM-41 modified by amino group retains its original structure and mesoporous characteristics while featuring a positively charged surface and chemically bonded amino groups.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!