Sensory neurons promote immune homeostasis in the lung.

Cell

Kimberly and Eric J. Waldman Department of Dermatology, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Mark Lebwohl Center for Neuroinflammation and Sensation, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Marc and Jennifer Lipschultz Precision Immunology Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Friedman Brain Institute, Icahn School of Medicine at Mount Sinai, New York, NY 10029, USA; Allen Discovery Center for Neuroimmune Interactions, New York, NY 10029, USA. Electronic address:

Published: January 2024

AI Article Synopsis

  • Scientists found that a special protein called JAK1 can cause allergies and skin problems in mice when changed in a certain way.
  • They discovered that JAK1 also helps control inflammation in the lungs, showing it works differently in different parts of the body.
  • This research might help create better medicines that target specific problems related to JAK1.

Article Abstract

Cytokines employ downstream Janus kinases (JAKs) to promote chronic inflammatory diseases. JAK1-dependent type 2 cytokines drive allergic inflammation, and patients with JAK1 gain-of-function (GoF) variants develop atopic dermatitis (AD) and asthma. To explore tissue-specific functions, we inserted a human JAK1 GoF variant (JAK1) into mice and observed the development of spontaneous AD-like skin disease but unexpected resistance to lung inflammation when JAK1 expression was restricted to the stroma. We identified a previously unrecognized role for JAK1 in vagal sensory neurons in suppressing airway inflammation. Additionally, expression of Calcb/CGRPβ was dependent on JAK1 in the vagus nerve, and CGRPβ suppressed group 2 innate lymphoid cell function and allergic airway inflammation. Our findings reveal evolutionarily conserved but distinct functions of JAK1 in sensory neurons across tissues. This biology raises the possibility that therapeutic JAK inhibitors may be further optimized for tissue-specific efficacy to enhance precision medicine in the future.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10811756PMC
http://dx.doi.org/10.1016/j.cell.2023.11.027DOI Listing

Publication Analysis

Top Keywords

sensory neurons
12
airway inflammation
8
jak1
7
neurons promote
4
promote immune
4
immune homeostasis
4
homeostasis lung
4
lung cytokines
4
cytokines employ
4
employ downstream
4

Similar Publications

Photoreceptors (PRs) are metabolically demanding and packed at high density, which presents a challenge for nutrient exchange between the associated vascular beds and the tissue. Motivated by the ambition to understand the constraints under which PRs function, in this study we have drawn together diverse physiological and anatomical data in order to generate estimates of the rates of ATP production per mm2 of retinal surface area. With the predictions of metabolic demand in the companion paper, we seek to develop an integrated energy budget for the outer retina.

View Article and Find Full Text PDF

Cone cGMP-phosphodiesterase (PDE6) is the key effector enzyme for daylight vision, and its properties are critical for shaping distinct physiology of cone photoreceptors. We determined the structures of human cone PDE6C in various liganded states by single-particle cryo-EM that reveal essential functional dynamics and adaptations of the enzyme. Our analysis exposed the dynamic nature of PDE6C association with its regulatory γ-subunit (Pγ) which allows openings of the catalytic pocket in the absence of phototransduction signaling, thereby controlling photoreceptor noise and sensitivity.

View Article and Find Full Text PDF

Aberrant neuronal hyperactivation causes an age-dependent behavioral decline in .

Proc Natl Acad Sci U S A

January 2025

Group of Microbial Motility, Department of Biological Science, Division of Natural Science, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan.

Age-dependent sensory impairment, memory loss, and cognitive decline are generally attributed to neuron loss, synaptic dysfunction, and decreased neuronal activities over time. Concurrently, increased neuronal activity is reported in humans and other organisms during aging. However, it is unclear whether neuronal hyperactivity is the cause of cognitive impairment or a compensatory mechanism of circuit dysfunction.

View Article and Find Full Text PDF

NMDA receptor mediated autoimmune encephalitis (NMDAR-AE) frequently results in persistent sensory-motor deficits, especially in children, yet the underlying mechanisms remain unclear. This study investigated the long- term effects of exposure to a patient-derived GluN1-specific monoclonal antibody (mAb) during a critical developmental period (from postnatal day 3 to day 12) in mice. We observed long-lasting sensory-motor deficits characteristic of NMDAR-AE, along with permanent changes in callosal axons within the primary somatosensory cortex (S1) in adulthood, including increased terminal branch complexity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!