Cytokines employ downstream Janus kinases (JAKs) to promote chronic inflammatory diseases. JAK1-dependent type 2 cytokines drive allergic inflammation, and patients with JAK1 gain-of-function (GoF) variants develop atopic dermatitis (AD) and asthma. To explore tissue-specific functions, we inserted a human JAK1 GoF variant (JAK1) into mice and observed the development of spontaneous AD-like skin disease but unexpected resistance to lung inflammation when JAK1 expression was restricted to the stroma. We identified a previously unrecognized role for JAK1 in vagal sensory neurons in suppressing airway inflammation. Additionally, expression of Calcb/CGRPβ was dependent on JAK1 in the vagus nerve, and CGRPβ suppressed group 2 innate lymphoid cell function and allergic airway inflammation. Our findings reveal evolutionarily conserved but distinct functions of JAK1 in sensory neurons across tissues. This biology raises the possibility that therapeutic JAK inhibitors may be further optimized for tissue-specific efficacy to enhance precision medicine in the future.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10811756 | PMC |
http://dx.doi.org/10.1016/j.cell.2023.11.027 | DOI Listing |
PLoS One
December 2024
UCL Institute of Ophthalmology, London, United Kingdom.
Photoreceptors (PRs) are metabolically demanding and packed at high density, which presents a challenge for nutrient exchange between the associated vascular beds and the tissue. Motivated by the ambition to understand the constraints under which PRs function, in this study we have drawn together diverse physiological and anatomical data in order to generate estimates of the rates of ATP production per mm2 of retinal surface area. With the predictions of metabolic demand in the companion paper, we seek to develop an integrated energy budget for the outer retina.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Department of Molecular Physiology and Biophysics, University of Iowa Carver College of Medicine, Iowa City, IA 52242.
Cone cGMP-phosphodiesterase (PDE6) is the key effector enzyme for daylight vision, and its properties are critical for shaping distinct physiology of cone photoreceptors. We determined the structures of human cone PDE6C in various liganded states by single-particle cryo-EM that reveal essential functional dynamics and adaptations of the enzyme. Our analysis exposed the dynamic nature of PDE6C association with its regulatory γ-subunit (Pγ) which allows openings of the catalytic pocket in the absence of phototransduction signaling, thereby controlling photoreceptor noise and sensitivity.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2025
Group of Microbial Motility, Department of Biological Science, Division of Natural Science, Graduate School of Science, Nagoya University, Nagoya 464-8602, Japan.
Age-dependent sensory impairment, memory loss, and cognitive decline are generally attributed to neuron loss, synaptic dysfunction, and decreased neuronal activities over time. Concurrently, increased neuronal activity is reported in humans and other organisms during aging. However, it is unclear whether neuronal hyperactivity is the cause of cognitive impairment or a compensatory mechanism of circuit dysfunction.
View Article and Find Full Text PDFJ Clin Invest
December 2024
Department of Neurology, UCSF, San Francisco, United States of America.
NMDA receptor mediated autoimmune encephalitis (NMDAR-AE) frequently results in persistent sensory-motor deficits, especially in children, yet the underlying mechanisms remain unclear. This study investigated the long- term effects of exposure to a patient-derived GluN1-specific monoclonal antibody (mAb) during a critical developmental period (from postnatal day 3 to day 12) in mice. We observed long-lasting sensory-motor deficits characteristic of NMDAR-AE, along with permanent changes in callosal axons within the primary somatosensory cortex (S1) in adulthood, including increased terminal branch complexity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!