Surface Instability in a Nematic Elastomer.

Phys Rev Lett

Department of Engineering, University of Cambridge, Trumpington Street, Cambridge CB2 1PZ, United Kingdom.

Published: December 2023

Liquid crystal elastomers (LCEs) are soft phase-changing solids that exhibit large reversible contractions upon heating, Goldstone-like soft modes, and resultant microstructural instabilities. We heat a planar LCE slab to isotropic, clamp the lower surface, then cool back to nematic. Clamping prevents macroscopic elongation, producing compression and microstructure. We see that the free surface destabilizes, adopting topography with amplitude and wavelength similar to thickness. To understand the instability, we numerically compute the microstructural relaxation of a "nonideal" LCE energy. Linear stability reveals a Biot-like scale-free instability, but with oblique wave vector. However, simulation and experiment show that, unlike classic elastic creasing, instability culminates in a crosshatch without cusps or hysteresis, and is constructed entirely from low-stress soft modes.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.131.238101DOI Listing

Publication Analysis

Top Keywords

soft modes
8
surface instability
4
instability nematic
4
nematic elastomer
4
elastomer liquid
4
liquid crystal
4
crystal elastomers
4
elastomers lces
4
lces soft
4
soft phase-changing
4

Similar Publications

Background And Purpose: Throwing a baseball involves intense exposure of the arm to high speeds and powerful forces, which contributes to an increasing prevalence of arm injuries among athletes. Traditional rigid exoskeletons and rehabilitation equipment frequently lack portability, safety, ergonomic design, and affordability. Traditional rehabilitation approaches frequently require therapist monitoring, resulting in therapy delays.

View Article and Find Full Text PDF

All biological systems are subject to perturbations: due to thermal fluctuations, external environments, or mutations. Yet, while biological systems are composed of thousands of interacting components, recent high-throughput experiments show that their response to perturbations is surprisingly low-dimensional: confined to only a few stereotyped changes out of the many possible. Here, we explore a unifying dynamical systems framework - soft modes - to explain and analyze low-dimensionality in biology, from molecules to eco-systems.

View Article and Find Full Text PDF

Anisotropic Plasmon Resonance in TiCT MXene Enables Site-Selective Plasmonic Catalysis.

ACS Nano

January 2025

Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou 215123, PR China.

The ever-growing interest in MXenes has been driven by their distinct electrical, thermal, mechanical, and optical properties. In this context, further revealing their physicochemical attributes remains the key frontier of MXene materials. Herein, we report the anisotropic localized surface plasmon resonance (LSPR) features in TiCT MXene as well as site-selective photocatalysis enabled by the photophysical anisotropy.

View Article and Find Full Text PDF

Theory of giant magnetoelastic effect in soft systems.

Sci Adv

January 2025

Department of Bioengineering, University of California, Los Angeles, Los Angeles, CA 90095, USA.

Article Synopsis
  • The magnetoelastic effect, traditionally seen in metals since 1865, has recently been observed in soft matter, opening up new possibilities for energy and healthcare applications.
  • A theoretical framework has been developed to accurately interpret this effect across different soft system variations, including deformation modes and magnetization profiles.
  • This research reveals significant magnetoelastic phenomena, like magnetic pole reversal, and provides a solid foundation for further exploration and practical uses in soft matter systems.
View Article and Find Full Text PDF

Liquid crystal elastomers (LCEs) with various deformation properties based on phase transition were widely used as actuators and provided potential to fabricate functional surfaces with tunable microstructure. Herein, we demonstrate a strategy to fabricate dynamic micro wrinkles on LCE surfaces based on LC phase transition. Stable micron-sized surface wrinkles on the anthracene-containing LCE film (AnLCE) are fabricated by ultraviolet exposure induced gradient cross-linking and subsequently stretching-releasing (UV-SR).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!