Localized States in Active Fluids.

Phys Rev Lett

Department of Biochemistry, University of Geneva, 1211 Geneva, Switzerland.

Published: December 2023

Biological active matter is typically tightly coupled to chemical reaction networks affecting its assembly-disassembly dynamics and stress generation. We show that localized states can emerge spontaneously if assembly of active matter is regulated by chemical species that are advected with flows resulting from gradients in the active stress. The mechanochemical localized patterns form via a subcritical bifurcation and for parameter values for which patterns do not exist in absence of the advective coupling. Our work identifies a generic mechanism underlying localized cellular patterns.

Download full-text PDF

Source
http://dx.doi.org/10.1103/PhysRevLett.131.238401DOI Listing

Publication Analysis

Top Keywords

localized states
8
active matter
8
localized
4
active
4
states active
4
active fluids
4
fluids biological
4
biological active
4
matter typically
4
typically tightly
4

Similar Publications

Objective: In recent years, many studies have investigated the triggers, perpetuating factors, and outcomes of Fear of Cancer Recurrence (FCR), highlighting its complexity with multiple dimensions that encompass both antecedents and consequences. In this sense, the cognitive approach to FCR has explored variables such as metacognition, maladaptive coping strategies, and intolerance of uncertainty (IU). On the other hand, the findings of a restricted number of studies investigating the relationship between FCR and stated variables appear to be inconsistent.

View Article and Find Full Text PDF

Aim: To investigate additional factors contributing to the pathophysiology of chemotherapy-induced oral mucositis and periodontitis beyond the systemic immune suppression caused by the chemotherapeutic agent 5-Fluorouracil (5-FU).

Methods: 5-Fluorouracil was topically delivered to the non-keratinized, rapidly proliferating junctional epithelium (JE) surrounding the dentition, and acts as an immunologic and functional barrier to bacterial ingression. Various techniques, including EdU incorporation, quantitative immunohistochemistry (qIHC), histology, enzymatic activity assays, and micro-computed tomographic (μCT) imaging, were employed to analyze the JE at multiple time points following topical 5-FU treatment.

View Article and Find Full Text PDF

Using angle-resolved photoemission spectroscopy (ARPES) and density functional theory (DFT), an experimental and theoretical study of changes in the electronic structure (dispersion dependencies) and corresponding modification of the energy band gap at the Dirac point (DP) for topological insulator (TI) [Formula: see text] have been carried out with gradual replacement of magnetic Mn atoms by non-magnetic Ge atoms when concentration of the latter was varied from 10% to 75%. It was shown that when Ge concentration increases, the bulk band gap decreases and reaches zero plateau in the concentration range of 45-60% while trivial surface states (TrSS) are present and exhibit an energy splitting of 100 and 70 meV in different types of measurements. It was also shown that TSS disappear from the measured band dispersions at a Ge concentration of about 40%.

View Article and Find Full Text PDF

Clinical treatment options for triple-negative breast cancer (TNBC) are currently limited to chemotherapy because of a lack of effective therapeutic targets. Recent evidence suggests that long noncoding RNAs (lncRNAs) encode bioactive peptides or proteins, thereby playing noncanonical yet significant roles in regulating cellular processes. However, the potential of lncRNA-translated products in cancer progression remains largely unknown.

View Article and Find Full Text PDF

Mechanical characteristics and load-bearing effect of roadway anchorage composite carrier.

Sci Rep

January 2025

China Coal Shanxi China Resources Liansheng Energy Investment Co., LTD, Lvliang, 033000, China.

Bolt support improves the stress state of the surrounding rock and forms an integral bearing structure inside the anchored surrounding rock. Therefore, it is of theoretical significance and practical application value to systematically study the mechanical mechanism and bearing characteristics of the anchorage composite carrier and elucidate the interaction mechanism between the bearing effect of the anchorage composite carrier and the stability of the roadway surrounding rock. In this paper, a mechanical model for the anchorage composite carrier is meticulously constructed through a fusion of theoretical analysis and advanced numerical simulation techniques.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!