A design strategy of pure Type-I thiadiazolo[3,4-g]quinoxaline-based photosensitizers for photodynamic therapy.

Eur J Med Chem

Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, No. 29 Zhongguancun East Road, Haidian District, Beijing, 100190, China; University of Chinese Academy of Sciences, No. 19A Yuquan Road, Beijing, 100049, China. Electronic address:

Published: February 2024

Most photosensitizers (PSs) for photodynamic therapy (PDT) can generate singlet oxygen through transferring energy with oxygen, called Type-II PSs. However, the microenvironment of solid tumor is usually anoxic. Type-I PSs can generate reactive oxygen species (ROS) through transferring electron to substrate, showing more efficient in PDT. But pure Type-I PSs are very rare. The relationship between PSs' chemical structure and Type-I mechanism has not been explicitly stated. In this study, two thiadiazolo [3,4-g]quinoxaline (TQ) PSs (PsCBz-1 and PsCBz-2) are synthesized through introducing carbazole groups to the 4,9-position of TQ backbone. Comparing with their prototype PS, 4,9-dibrominated TQ (TQs-4), the introduction of carbazole groups reverses the reaction mechanism of PSs from pure Type-II to pure Type-I. Excitingly, the water-dispersible nanoparticles (NPs) of PsCBz-1 can achieve strong phototoxicity in vitro under both normoxia and hypoxia through Type-I mechanism. In addition, PsCBz-1 NPs also exhibits remarkable PDT antitumor effect in vivo. This study provides a feasible design strategy for pure Type-I PSs.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ejmech.2023.116059DOI Listing

Publication Analysis

Top Keywords

pure type-i
16
type-i pss
12
design strategy
8
strategy pure
8
photodynamic therapy
8
type-i mechanism
8
carbazole groups
8
type-i
7
pss
7
pure
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!