Machine learning for hospital readmission prediction in pediatric population.

Comput Methods Programs Biomed

Graduate Program in Health Sciences, Federal University of Uberlandia, Uberlandia, Minas Gerais, Brazil, Pará Av, 1720, Campus Umuarama, Uberlândia, Minas Gerais 38400-902, Brazil. Electronic address:

Published: February 2024

Background And Objective: Pediatric readmissions are a burden on patients, families, and the healthcare system. In order to identify patients at higher readmission risk, more accurate techniques, as machine learning (ML), could be a good strategy to expand the knowledge in this area. The aim of this study was to develop predictive models capable of identifying children and adolescents at high risk of potentially avoidable 30-day readmission using ML.

Methods: Retrospective cohort study was carried out with 9,080 patients under 18 years old admitted to a tertiary university hospital. Demographic, clinical, and biochemical data were collected from electronic databases. We randomly divided the dataset into training (75 %) and testing (25 %), applied downsampling, repeated cross-validation with five folds and ten repetitions, and the hyperparameter was optimized of each technique using a grid search via racing with ANOVA models. We applied six ML classification algorithms to build the predictive models, including classification and regression tree (CART), random forest (RF), gradient boosting machine (GBM), extreme gradient boosting (XGBoost), decision tree and logistic regression (LR). The area under the receiver operating curve (AUC), sensitivity, specificity, Youden's J-index and accuracy were used to evaluate the performance of each model.

Results: The avoidable 30-day hospital readmissions rate was 9.5 %. Some algorithms presented similar AUC, both in the dataset training and in the dataset testing, such as XGBoost, RF, GBM and CART. Considering the Youden's J-index, the algorithm that presented the best index was XGBoost with bagging imputation, with AUC of 0.814 (J-index of 0.484). Cancer diagnosis, age, red blood cells, leukocytes, red cell distribution width and sodium levels, elective admission, and multimorbidity were the most important characteristics to classify between readmission and non-readmission groups.

Conclusion: Machine learning approaches, especially XGBoost, can predict potentially avoidable 30-day pediatric hospital readmission into tertiary assistance. If implemented in the computer hospital system, our model can help in the early and more accurate identification of patients at readmission risk, targeting health strategic interventions.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cmpb.2023.107980DOI Listing

Publication Analysis

Top Keywords

machine learning
12
avoidable 30-day
12
hospital readmission
8
readmission risk
8
predictive models
8
dataset training
8
gradient boosting
8
youden's j-index
8
readmission
6
hospital
5

Similar Publications

Background: Alzheimer's disease (AD), a hallmark of age-related cognitive decline, is defined by its unique neuropathology. Metabolic dysregulation, particularly involving glutamine (Gln) metabolism, has emerged as a critical but underexplored aspect of AD pathophysiology, representing a significant gap in our current understanding of the disease.

Methods: To investigate the involvement of GlnMgs in AD, we conducted a comprehensive bioinformatic analysis.

View Article and Find Full Text PDF

Introduction: Unsupervised feature learning methods inspired by natural language processing (NLP) models are capable of constructing patient-specific features from longitudinal Electronic Health Records (EHR).

Design: We applied document embedding algorithms to real-world paediatric intensive care (PICU) EHR data to extract patient-specific features from 1853 patients' PICU journeys using 647 unique lab tests and medication events. We evaluated the clinical utility of the patient features via a K-means clustering analysis.

View Article and Find Full Text PDF

Background: With the rising diagnostic rate of gallbladder polypoid lesions (GPLs), differentiating benign cholesterol polyps from gallbladder adenomas with a higher preoperative malignancy risk is crucial. This study aimed to establish a preoperative prediction model capable of accurately distinguishing between gallbladder adenomas and cholesterol polyps using machine learning algorithms.

Materials And Methods: We retrospectively analysed the patients' clinical baseline data, serological indicators, and ultrasound imaging data.

View Article and Find Full Text PDF

Background: Neuroblastoma, a prevalent extracranial solid tumor in pediatric patients, demonstrates significant clinical heterogeneity, ranging from spontaneous regression to aggressive metastatic disease. Despite advances in treatment, high-risk neuroblastoma remains associated with poor survival. SLC1A5, a key glutamine transporter, plays a dual role in promoting tumor growth and immune modulation.

View Article and Find Full Text PDF

Background: Drivers of COVID-19 severity are multifactorial and include multidimensional and potentially interacting factors encompassing viral determinants and host-related factors (i.e., demographics, pre-existing conditions and/or genetics), thus complicating the prediction of clinical outcomes for different severe acute respiratory syndrome coronavirus (SARS-CoV-2) variants.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!